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About Tim

• Chief Scientist, co-founder of emproof

• designs software protections for embedded devices

• trainer for (de)obfuscation and reverse engineering techniques
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Setting the Scene

Question-Circle Navigating in Large Binaries

Paw Common Strategies

ARROW-RIGHT Code Detection Heuristics
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Question-Circle Large Binary



Analysis Challenges

• locating complex state machines and protocol logic

• detecting cryptographic implementations

• discovering C&C server communication and string decryption routines

• pinpointing obfuscated code in commercial applications

• identifying API functions in statically-linked executables

vulnerability discoverymalware & vulnerability analysismalware analysissoftware piracyembedded firmware analysisGoal: Identifying interesting code locations

4



Analysis Challenges

• locating complex state machines and protocol logic

• detecting cryptographic implementations

• discovering C&C server communication and string decryption routines

• pinpointing obfuscated code in commercial applications

• identifying API functions in statically-linked executables

vulnerability discovery

malware & vulnerability analysismalware analysissoftware piracyembedded firmware analysisGoal: Identifying interesting code locations

4



Analysis Challenges

• locating complex state machines and protocol logic

• detecting cryptographic implementations

• discovering C&C server communication and string decryption routines

• pinpointing obfuscated code in commercial applications

• identifying API functions in statically-linked executables

vulnerability discoverymalware & vulnerability analysismalware analysissoftware piracyembedded firmware analysisGoal: Identifying interesting code locations

4



Analysis Challenges

• locating complex state machines and protocol logic

• detecting cryptographic implementations

• discovering C&C server communication and string decryption routines

• pinpointing obfuscated code in commercial applications

• identifying API functions in statically-linked executables

vulnerability discovery

malware & vulnerability analysis

malware analysissoftware piracyembedded firmware analysisGoal: Identifying interesting code locations

4



Analysis Challenges

• locating complex state machines and protocol logic

• detecting cryptographic implementations

• discovering C&C server communication and string decryption routines

• pinpointing obfuscated code in commercial applications

• identifying API functions in statically-linked executables

vulnerability discoverymalware & vulnerability analysismalware analysissoftware piracyembedded firmware analysisGoal: Identifying interesting code locations

4



Analysis Challenges

• locating complex state machines and protocol logic

• detecting cryptographic implementations

• discovering C&C server communication and string decryption routines

• pinpointing obfuscated code in commercial applications

• identifying API functions in statically-linked executables

vulnerability discoverymalware & vulnerability analysis

malware analysis

software piracyembedded firmware analysisGoal: Identifying interesting code locations

4



Analysis Challenges

• locating complex state machines and protocol logic

• detecting cryptographic implementations

• discovering C&C server communication and string decryption routines

• pinpointing obfuscated code in commercial applications

• identifying API functions in statically-linked executables

vulnerability discoverymalware & vulnerability analysismalware analysissoftware piracyembedded firmware analysisGoal: Identifying interesting code locations

4



Analysis Challenges

• locating complex state machines and protocol logic

• detecting cryptographic implementations

• discovering C&C server communication and string decryption routines

• pinpointing obfuscated code in commercial applications

• identifying API functions in statically-linked executables

vulnerability discoverymalware & vulnerability analysismalware analysis

software piracy

embedded firmware analysisGoal: Identifying interesting code locations

4



Analysis Challenges

• locating complex state machines and protocol logic

• detecting cryptographic implementations

• discovering C&C server communication and string decryption routines

• pinpointing obfuscated code in commercial applications

• identifying API functions in statically-linked executables

vulnerability discoverymalware & vulnerability analysismalware analysissoftware piracyembedded firmware analysisGoal: Identifying interesting code locations

4



Analysis Challenges

• locating complex state machines and protocol logic

• detecting cryptographic implementations

• discovering C&C server communication and string decryption routines

• pinpointing obfuscated code in commercial applications

• identifying API functions in statically-linked executables

vulnerability discoverymalware & vulnerability analysismalware analysissoftware piracy

embedded firmware analysis

Goal: Identifying interesting code locations

4



Analysis Challenges

• locating complex state machines and protocol logic

• detecting cryptographic implementations

• discovering C&C server communication and string decryption routines

• pinpointing obfuscated code in commercial applications

• identifying API functions in statically-linked executables

vulnerability discoverymalware & vulnerability analysismalware analysissoftware piracyembedded firmware analysis

Goal: Identifying interesting code locations

4



Where to start?



Common Approaches

• function symbols

• meaningful strings

• interesting API functions

validate_serial()“https://evildomain.com”GetAsyncKeyStateExclamation-Triangle Not always applicable
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ARROW-RIGHT Code Detection Heuristics



Code Detection Heuristics

Identification of interesting code constructs

• guide manual analysis

• architecture-agnostic

• efficient to compute

False positives will occurAll architectures supported by the disassemblerApplicable to ~100,000 functions
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How?



Code Complexity and Statistical Analysis

Interesting code is

• (artificially) complex
• frequently executed
• uncommon

• basic block/function size
• control-flow graph characteristics
• frequency analysis
• usage of intermediate representations

complex codeunderlying code constructs(un)common code patternsarchitecture-agnostic instruction patterns
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Detection Heuristics

Heuristics

1. large basic blocks
2. complex functions
3. frequently called functions
4. state machines
5. uncommon instruction sequences

• most heuristics relative to all functions in the binary

• each heuristic detects different patterns

Clear separation between functionsKnow what to use & when
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Large Basic Blocks





Large Basic Blocks

Identification of functions with large basic blocks

• ~5-7 instructions per basic block (on average)

• larger basic blocks indicate complex straight-line code

• compute per function:

#instructions
#basic blocks
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Complex Straight-Line Code

• unrolled loops

• cryptographic implementations

• initialization routines

• arithmetic obfuscation

15



Example: Anti-Cheat I

average #instructions/block per function (in descending order):

1,456
198
68
63
59
55
52
51
49
46

arithmetic and virtualization-based obfuscation
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Example: ntoskrnl.exe (Windows Kernel)

functions and their corresponding avergage #instructions/block (in descending order):

SepInitSystemDacls 491
SymCryptSha256AppendBlocks_ul1 236
HalpRestoreHvEnlightenment 147
MiInitializeDummyPages 133
HalpBlkInitializeProcessorState 103

initialization routinescryptographic implementations

17



Example: ntoskrnl.exe (Windows Kernel)

functions and their corresponding avergage #instructions/block (in descending order):

SepInitSystemDacls 491
SymCryptSha256AppendBlocks_ul1 236
HalpRestoreHvEnlightenment 147
MiInitializeDummyPages 133
HalpBlkInitializeProcessorState 103

initialization routinescryptographic implementations

17



Example: ntoskrnl.exe (Windows Kernel)

functions and their corresponding avergage #instructions/block (in descending order):

SepInitSystemDacls 491
SymCryptSha256AppendBlocks_ul1 236
HalpRestoreHvEnlightenment 147
MiInitializeDummyPages 133
HalpBlkInitializeProcessorState 103

initialization routines

cryptographic implementations

17



Example: ntoskrnl.exe (Windows Kernel)

functions and their corresponding avergage #instructions/block (in descending order):

SepInitSystemDacls 491
SymCryptSha256AppendBlocks_ul1 236
HalpRestoreHvEnlightenment 147
MiInitializeDummyPages 133
HalpBlkInitializeProcessorState 103

initialization routinescryptographic implementations

17



Example: ntoskrnl.exe (Windows Kernel)

functions and their corresponding avergage #instructions/block (in descending order):

SepInitSystemDacls 491
SymCryptSha256AppendBlocks_ul1 236
HalpRestoreHvEnlightenment 147
MiInitializeDummyPages 133
HalpBlkInitializeProcessorState 103

initialization routines

cryptographic implementations

17



Complex Functions





Complex Functions

Identification of functions with large control-flow graphs

• large functions indicate a complex code logic

• file parsing

• dispatching routines and network protocols

• obfuscation

• efficient metric: cyclomatic complexity
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Cyclomatic Complexity

#edges−#basic blocks+ 2

D

A

B C

• 4 basic blocks
• 4 edges

cyclomatic complexity: 2
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Example: ntoskrnl.exe (Windows Kernel)

cyclomatic complexity per function (in descending order):

2,964
2,371
1,506
718
642
435
414
318
281
274

related to PatchGuard (anti-tamper protection)
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Frequently Called Functions
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Frequently Called Functions

Identification of functions which are frequently called from different functions

• allows the identification of API functions in statically-linked executables

• can sometimes also detect string decryption & hash functions in malware

What kind of functions are called frequently?

25



Frequently Called Functions

Identification of functions which are frequently called from different functions

• allows the identification of API functions in statically-linked executables

• can sometimes also detect string decryption & hash functions in malware

What kind of functions are called frequently?

25



Frequently Called Functions

Identification of functions which are frequently called from different functions

• allows the identification of API functions in statically-linked executables

• can sometimes also detect string decryption & hash functions in malware

What kind of functions are called frequently?

25



Frequently Called Functions

Identification of functions which are frequently called from different functions

• allows the identification of API functions in statically-linked executables

• can sometimes also detect string decryption & hash functions in malware

What kind of functions are called frequently?

25



Frequently Called API Functions

• memory management

• data movement

• string operations

• file I/O operations

26



Example: XOR DDoS (Malware)

Most called functions (from unique callers) in the statically-linked malware:

free 293
memcpy 191
strlen 184
memset 174
__libc_malloc 151
__lll_unlock_wake_private 148
__lll_lock_wait_private 122
ptmalloc_init 114
__strtol_internal 99
strcmp 93

frequently called API functions
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Example: PlugX (Malware)

Most called functions (from unique callers) and their number of calls:

crc32 1253
LoadLibraryA 1253
__seterrormode 320

hash-based import hidingpotential clustering of functions
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Identification of State Machines



State Machine Heuristic

30



State Machines

Identification of functions with loop-based dispatching routines

while(true) {
switch(state) {

case state_0: ...
case state_1: ...
...
case state_n: ...

}
}

• state machines often implement a complex program logic
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Complex State Machines

• file format parsing

• input validation & sanitization

• network protocol dispatching

• C&C server communication & command dispatching

• data encoding/decoding

32



State Machine Heuristic

Controlled Blocks

Controller}

#controlled blocks
#blocks in the function
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Examples

PlugX (Malware)

• C&C communication & command dispatching

ls

• recursive directory traversal

gcc

• file parsing and tokenizing
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Uncommon Instruction Sequences





Observation



Statistical Analysis of Assembly Code



Common Instruction Sequences

push rbp
mov rbp, rsp
push rbx
push rax
mov rbx, qword [rdi+0x30]
mov edi, dword [rdi+0x38]
call _strerror
lea rdi, [0x7bc6]
mov rsi, rbx
mov rdx, rax
xor eax, eax
call _warnx
mov byte [0x8678], 0x1
add rsp, 0x8
pop rbx
pop rbp
retn

prologues and epiloguesfunction callsdata movement
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Uncommon Instruction Sequences

Identification of functions with a large number of unusual instruction sequences

• intensive use of floating-point instructions

• cryptographic implementations

• obfuscated code

40



Statistical Analysis

ground truth of the 1,000 most common instruction sequences:

mov mov mov
mov call mov
mov mov call

…
sar mov mov

How many instruction sequences are not in the ground truth?

architecture-agnostic implementation based on intermediate representations

41
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Example: ci.dll (Windows Kernel Module)

Functions with the most uncommon instruction sequences (in descending order):

MinCryptIsFileRevoked
__security_check_cookie
SymCryptFdefMaskedCopyAsm
SymCryptSha256AppendBlocks_shani
SymCryptFdefRawMulMulx1024
SymCryptParallelSha256AppendBlocks_ymm
SymCryptParallelSha256AppendBlocks_xmm
SymCryptModElementIsZero
SymCryptFdefMontgomeryReduceMulx1024
CipIsSigningLevelRuntimeCustomizable
SymCryptFdefMontgomeryReduceMulx
Gvd5e6c0

cryptographic implementationsvirtualization-based obfuscation
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Takeaways

1. efficient and architecture-agnostic heuristics
2. detects a wide range of interesting code constructs
3. false positives will occur

Useful methods to guide manual analysis in unknown binaries.
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Binary Ninja Plugin

https://github.com/mrphrazer/obfuscation_detection
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Plugin Manager
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Summary

• common approaches to navigate in large binaries
• architecture-agnostic detection heuristics to pinpoint intesting code constructs
• useful in many reverse engieering scenarios

https://github.com/mrphrazer/obfuscation_detection/

Tim Blazytko
Twitter @mr_phrazer

HOME synthesis.to

Envelope tim@blazytko.to
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