
Unveiling Secrets in Binaries using Code Detection Strategies

Tim Blazytko

Twitter @mr_phrazer
HOME synthesis.to
Envelope tim@blazytko.to

https://twitter.com/mr_phrazer
https://synthesis.to
mailto:tim@blazytko.to


About Tim

• Chief Scientist, co-founder of emproof

• designs software protections for embedded devices

• trainer for (de)obfuscation and reverse engineering techniques

1



Setting the Scene

Question-Circle Navigating in Large Binaries

Paw Common Strategies

ARROW-RIGHT Code Detection Heuristics

2



Question-Circle Large Binary



Analysis Challenges

• locating complex state machines and protocol logic

• detecting cryptographic implementations

• discovering C&C server communication and string decryption routines

• pinpointing obfuscated code in commercial applications

• identifying API functions in statically-linked executables

vulnerability discoverymalware & vulnerability analysismalware analysissoftware piracyembedded firmware analysisGoal: Identifying interesting code locations

4



Analysis Challenges

• locating complex state machines and protocol logic

• detecting cryptographic implementations

• discovering C&C server communication and string decryption routines

• pinpointing obfuscated code in commercial applications

• identifying API functions in statically-linked executables

vulnerability discovery

malware & vulnerability analysismalware analysissoftware piracyembedded firmware analysisGoal: Identifying interesting code locations

4



Analysis Challenges

• locating complex state machines and protocol logic

• detecting cryptographic implementations

• discovering C&C server communication and string decryption routines

• pinpointing obfuscated code in commercial applications

• identifying API functions in statically-linked executables

vulnerability discoverymalware & vulnerability analysismalware analysissoftware piracyembedded firmware analysisGoal: Identifying interesting code locations

4



Analysis Challenges

• locating complex state machines and protocol logic

• detecting cryptographic implementations

• discovering C&C server communication and string decryption routines

• pinpointing obfuscated code in commercial applications

• identifying API functions in statically-linked executables

vulnerability discovery

malware & vulnerability analysis

malware analysissoftware piracyembedded firmware analysisGoal: Identifying interesting code locations

4



Analysis Challenges

• locating complex state machines and protocol logic

• detecting cryptographic implementations

• discovering C&C server communication and string decryption routines

• pinpointing obfuscated code in commercial applications

• identifying API functions in statically-linked executables

vulnerability discoverymalware & vulnerability analysismalware analysissoftware piracyembedded firmware analysisGoal: Identifying interesting code locations

4



Analysis Challenges

• locating complex state machines and protocol logic

• detecting cryptographic implementations

• discovering C&C server communication and string decryption routines

• pinpointing obfuscated code in commercial applications

• identifying API functions in statically-linked executables

vulnerability discoverymalware & vulnerability analysis

malware analysis

software piracyembedded firmware analysisGoal: Identifying interesting code locations

4



Analysis Challenges

• locating complex state machines and protocol logic

• detecting cryptographic implementations

• discovering C&C server communication and string decryption routines

• pinpointing obfuscated code in commercial applications

• identifying API functions in statically-linked executables

vulnerability discoverymalware & vulnerability analysismalware analysissoftware piracyembedded firmware analysisGoal: Identifying interesting code locations

4



Analysis Challenges

• locating complex state machines and protocol logic

• detecting cryptographic implementations

• discovering C&C server communication and string decryption routines

• pinpointing obfuscated code in commercial applications

• identifying API functions in statically-linked executables

vulnerability discoverymalware & vulnerability analysismalware analysis

software piracy

embedded firmware analysisGoal: Identifying interesting code locations

4



Analysis Challenges

• locating complex state machines and protocol logic

• detecting cryptographic implementations

• discovering C&C server communication and string decryption routines

• pinpointing obfuscated code in commercial applications

• identifying API functions in statically-linked executables

vulnerability discoverymalware & vulnerability analysismalware analysissoftware piracyembedded firmware analysisGoal: Identifying interesting code locations

4



Analysis Challenges

• locating complex state machines and protocol logic

• detecting cryptographic implementations

• discovering C&C server communication and string decryption routines

• pinpointing obfuscated code in commercial applications

• identifying API functions in statically-linked executables

vulnerability discoverymalware & vulnerability analysismalware analysissoftware piracy

embedded firmware analysis

Goal: Identifying interesting code locations

4



Analysis Challenges

• locating complex state machines and protocol logic

• detecting cryptographic implementations

• discovering C&C server communication and string decryption routines

• pinpointing obfuscated code in commercial applications

• identifying API functions in statically-linked executables

vulnerability discoverymalware & vulnerability analysismalware analysissoftware piracyembedded firmware analysis

Goal: Identifying interesting code locations

4



Where to start?



Common Approaches

• function symbols

• meaningful strings

• interesting API functions

validate_serial()“https://evildomain.com”GetAsyncKeyStateExclamation-Triangle Not always applicable

6



Common Approaches

• function symbols

• meaningful strings

• interesting API functions

validate_serial()

“https://evildomain.com”GetAsyncKeyStateExclamation-Triangle Not always applicable

6



Common Approaches

• function symbols

• meaningful strings

• interesting API functions

validate_serial()“https://evildomain.com”GetAsyncKeyStateExclamation-Triangle Not always applicable

6



Common Approaches

• function symbols

• meaningful strings

• interesting API functions

validate_serial()

“https://evildomain.com”

GetAsyncKeyStateExclamation-Triangle Not always applicable

6



Common Approaches

• function symbols

• meaningful strings

• interesting API functions

validate_serial()“https://evildomain.com”GetAsyncKeyStateExclamation-Triangle Not always applicable

6



Common Approaches

• function symbols

• meaningful strings

• interesting API functions

validate_serial()“https://evildomain.com”

GetAsyncKeyState

Exclamation-Triangle Not always applicable

6



Common Approaches

• function symbols

• meaningful strings

• interesting API functions

validate_serial()“https://evildomain.com”GetAsyncKeyState

Exclamation-Triangle Not always applicable

6



ARROW-RIGHT Code Detection Heuristics



Code Detection Heuristics

Identification of interesting code constructs

• guide manual analysis

• architecture-agnostic

• efficient to compute

False positives will occurAll architectures supported by the disassemblerApplicable to ~100,000 functions

8



Code Detection Heuristics

Identification of interesting code constructs

• guide manual analysis

• architecture-agnostic

• efficient to compute

False positives will occurAll architectures supported by the disassemblerApplicable to ~100,000 functions

8



Code Detection Heuristics

Identification of interesting code constructs

• guide manual analysis

• architecture-agnostic

• efficient to compute

False positives will occur

All architectures supported by the disassemblerApplicable to ~100,000 functions

8



Code Detection Heuristics

Identification of interesting code constructs

• guide manual analysis

• architecture-agnostic

• efficient to compute

False positives will occurAll architectures supported by the disassemblerApplicable to ~100,000 functions

8



Code Detection Heuristics

Identification of interesting code constructs

• guide manual analysis

• architecture-agnostic

• efficient to compute

False positives will occur

All architectures supported by the disassembler

Applicable to ~100,000 functions

8



Code Detection Heuristics

Identification of interesting code constructs

• guide manual analysis

• architecture-agnostic

• efficient to compute

False positives will occurAll architectures supported by the disassemblerApplicable to ~100,000 functions

8



Code Detection Heuristics

Identification of interesting code constructs

• guide manual analysis

• architecture-agnostic

• efficient to compute

False positives will occurAll architectures supported by the disassembler

Applicable to ~100,000 functions

8



How?



Code Complexity and Statistical Analysis

Interesting code is

• (artificially) complex
• frequently executed
• uncommon

• basic block/function size
• control-flow graph characteristics
• frequency analysis
• usage of intermediate representations

complex codeunderlying code constructs(un)common code patternsarchitecture-agnostic instruction patterns

10



Code Complexity and Statistical Analysis

Interesting code is

• (artificially) complex
• frequently executed
• uncommon

• basic block/function size

• control-flow graph characteristics
• frequency analysis
• usage of intermediate representations

complex codeunderlying code constructs(un)common code patternsarchitecture-agnostic instruction patterns

10



Code Complexity and Statistical Analysis

Interesting code is

• (artificially) complex
• frequently executed
• uncommon

• basic block/function size

• control-flow graph characteristics
• frequency analysis
• usage of intermediate representations

complex code

underlying code constructs(un)common code patternsarchitecture-agnostic instruction patterns

10



Code Complexity and Statistical Analysis

Interesting code is

• (artificially) complex
• frequently executed
• uncommon

• basic block/function size
• control-flow graph characteristics

• frequency analysis
• usage of intermediate representations

complex codeunderlying code constructs(un)common code patternsarchitecture-agnostic instruction patterns

10



Code Complexity and Statistical Analysis

Interesting code is

• (artificially) complex
• frequently executed
• uncommon

• basic block/function size
• control-flow graph characteristics

• frequency analysis
• usage of intermediate representations

complex code

underlying code constructs

(un)common code patternsarchitecture-agnostic instruction patterns

10



Code Complexity and Statistical Analysis

Interesting code is

• (artificially) complex
• frequently executed
• uncommon

• basic block/function size
• control-flow graph characteristics
• frequency analysis

• usage of intermediate representations

complex codeunderlying code constructs(un)common code patternsarchitecture-agnostic instruction patterns

10



Code Complexity and Statistical Analysis

Interesting code is

• (artificially) complex
• frequently executed
• uncommon

• basic block/function size
• control-flow graph characteristics
• frequency analysis

• usage of intermediate representations

complex codeunderlying code constructs

(un)common code patterns

architecture-agnostic instruction patterns

10



Code Complexity and Statistical Analysis

Interesting code is

• (artificially) complex
• frequently executed
• uncommon

• basic block/function size
• control-flow graph characteristics
• frequency analysis
• usage of intermediate representations

complex codeunderlying code constructs(un)common code patternsarchitecture-agnostic instruction patterns

10



Code Complexity and Statistical Analysis

Interesting code is

• (artificially) complex
• frequently executed
• uncommon

• basic block/function size
• control-flow graph characteristics
• frequency analysis
• usage of intermediate representations

complex codeunderlying code constructs(un)common code patterns

architecture-agnostic instruction patterns

10



Detection Heuristics

Heuristics

1. large basic blocks
2. complex functions
3. frequently called functions
4. state machines
5. uncommon instruction sequences

• most heuristics relative to all functions in the binary

• each heuristic detects different patterns

Clear separation between functionsKnow what to use & when

11



Detection Heuristics

Heuristics

1. large basic blocks
2. complex functions
3. frequently called functions
4. state machines
5. uncommon instruction sequences

• most heuristics relative to all functions in the binary

• each heuristic detects different patterns

Clear separation between functionsKnow what to use & when

11



Detection Heuristics

Heuristics

1. large basic blocks
2. complex functions
3. frequently called functions
4. state machines
5. uncommon instruction sequences

• most heuristics relative to all functions in the binary

• each heuristic detects different patterns

Clear separation between functions

Know what to use & when

11



Detection Heuristics

Heuristics

1. large basic blocks
2. complex functions
3. frequently called functions
4. state machines
5. uncommon instruction sequences

• most heuristics relative to all functions in the binary

• each heuristic detects different patterns

Clear separation between functionsKnow what to use & when

11



Detection Heuristics

Heuristics

1. large basic blocks
2. complex functions
3. frequently called functions
4. state machines
5. uncommon instruction sequences

• most heuristics relative to all functions in the binary

• each heuristic detects different patterns

Clear separation between functions

Know what to use & when

11



Large Basic Blocks





Large Basic Blocks

Identification of functions with large basic blocks

• ~5-7 instructions per basic block (on average)

• larger basic blocks indicate complex straight-line code

• compute per function:

#instructions
#basic blocks

14



Large Basic Blocks

Identification of functions with large basic blocks

• ~5-7 instructions per basic block (on average)

• larger basic blocks indicate complex straight-line code

• compute per function:

#instructions
#basic blocks

14



Large Basic Blocks

Identification of functions with large basic blocks

• ~5-7 instructions per basic block (on average)

• larger basic blocks indicate complex straight-line code

• compute per function:

#instructions
#basic blocks

14



Large Basic Blocks

Identification of functions with large basic blocks

• ~5-7 instructions per basic block (on average)

• larger basic blocks indicate complex straight-line code

• compute per function:

#instructions
#basic blocks

14



Complex Straight-Line Code

• unrolled loops

• cryptographic implementations

• initialization routines

• arithmetic obfuscation

15



Example: Anti-Cheat I

average #instructions/block per function (in descending order):

1,456
198
68
63
59
55
52
51
49
46

arithmetic and virtualization-based obfuscation

16



Example: Anti-Cheat I

average #instructions/block per function (in descending order):

1,456
198
68
63
59
55
52
51
49
46

arithmetic and virtualization-based obfuscation

16



Example: Anti-Cheat I

average #instructions/block per function (in descending order):

1,456
198
68
63
59
55
52
51
49
46

arithmetic and virtualization-based obfuscation

16



Example: ntoskrnl.exe (Windows Kernel)

functions and their corresponding avergage #instructions/block (in descending order):

SepInitSystemDacls 491
SymCryptSha256AppendBlocks_ul1 236
HalpRestoreHvEnlightenment 147
MiInitializeDummyPages 133
HalpBlkInitializeProcessorState 103

initialization routinescryptographic implementations

17



Example: ntoskrnl.exe (Windows Kernel)

functions and their corresponding avergage #instructions/block (in descending order):

SepInitSystemDacls 491
SymCryptSha256AppendBlocks_ul1 236
HalpRestoreHvEnlightenment 147
MiInitializeDummyPages 133
HalpBlkInitializeProcessorState 103

initialization routinescryptographic implementations

17



Example: ntoskrnl.exe (Windows Kernel)

functions and their corresponding avergage #instructions/block (in descending order):

SepInitSystemDacls 491
SymCryptSha256AppendBlocks_ul1 236
HalpRestoreHvEnlightenment 147
MiInitializeDummyPages 133
HalpBlkInitializeProcessorState 103

initialization routines

cryptographic implementations

17



Example: ntoskrnl.exe (Windows Kernel)

functions and their corresponding avergage #instructions/block (in descending order):

SepInitSystemDacls 491
SymCryptSha256AppendBlocks_ul1 236
HalpRestoreHvEnlightenment 147
MiInitializeDummyPages 133
HalpBlkInitializeProcessorState 103

initialization routinescryptographic implementations

17



Example: ntoskrnl.exe (Windows Kernel)

functions and their corresponding avergage #instructions/block (in descending order):

SepInitSystemDacls 491
SymCryptSha256AppendBlocks_ul1 236
HalpRestoreHvEnlightenment 147
MiInitializeDummyPages 133
HalpBlkInitializeProcessorState 103

initialization routines

cryptographic implementations

17



Complex Functions





Complex Functions

Identification of functions with large control-flow graphs

• large functions indicate a complex code logic

• file parsing

• dispatching routines and network protocols

• obfuscation

• efficient metric: cyclomatic complexity

20



Complex Functions

Identification of functions with large control-flow graphs

• large functions indicate a complex code logic

• file parsing

• dispatching routines and network protocols

• obfuscation

• efficient metric: cyclomatic complexity

20



Complex Functions

Identification of functions with large control-flow graphs

• large functions indicate a complex code logic

• file parsing

• dispatching routines and network protocols

• obfuscation

• efficient metric: cyclomatic complexity

20



Cyclomatic Complexity

#edges−#basic blocks+ 2

D

A

B C

• 4 basic blocks
• 4 edges

cyclomatic complexity: 2

21



Cyclomatic Complexity

#edges−#basic blocks+ 2

D

A

B C

• 4 basic blocks
• 4 edges

cyclomatic complexity: 2

21



Cyclomatic Complexity

#edges−#basic blocks+ 2

D

A

B C

• 4 basic blocks
• 4 edges

cyclomatic complexity: 2

21



Example: ntoskrnl.exe (Windows Kernel)

cyclomatic complexity per function (in descending order):

2,964
2,371
1,506
718
642
435
414
318
281
274

related to PatchGuard (anti-tamper protection)

22



Example: ntoskrnl.exe (Windows Kernel)

cyclomatic complexity per function (in descending order):

2,964
2,371
1,506
718
642
435
414
318
281
274

related to PatchGuard (anti-tamper protection)

22



Example: ntoskrnl.exe (Windows Kernel)

cyclomatic complexity per function (in descending order):

2,964
2,371
1,506
718
642
435
414
318
281
274

related to PatchGuard (anti-tamper protection)

22



Frequently Called Functions



call 0xdeadbeef call 0xdeadbeef call 0xdeadbeef call 0xdeadbeef
call 0xdeadbeef call 0xdeadbeef call 0xdeadbeef call 0xdeadbeef
call 0xdeadbeef call 0xdeadbeef call 0xdeadbeef call 0xdeadbeef
call 0xdeadbeef call 0xdeadbeef call 0xdeadbeef call 0xdeadbeef
call 0xdeadbeef call 0xdeadbeef call 0xdeadbeef call 0xdeadbeef
call 0xdeadbeef call 0xdeadbeef call 0xdeadbeef call 0xdeadbeef
call 0xdeadbeef call 0xdeadbeef call 0xdeadbeef call 0xdeadbeef
call 0xdeadbeef call 0xdeadbeef call 0xdeadbeef call 0xdeadbeef
call 0xdeadbeef call 0xdeadbeef call 0xdeadbeef call 0xdeadbeef
call 0xdeadbeef call 0xdeadbeef call 0xdeadbeef call 0xdeadbeef
call 0xdeadbeef call 0xdeadbeef call 0xdeadbeef call 0xdeadbeef
call 0xdeadbeef call 0xdeadbeef call 0xdeadbeef call 0xdeadbeef
call 0xdeadbeef call 0xdeadbeef call 0xdeadbeef call 0xdeadbeef
call 0xdeadbeef call 0xdeadbeef call 0xdeadbeef call 0xdeadbeef
call 0xdeadbeef call 0xdeadbeef call 0xdeadbeef call 0xdeadbeef



Frequently Called Functions

Identification of functions which are frequently called from different functions

• allows the identification of API functions in statically-linked executables

• can sometimes also detect string decryption & hash functions in malware

What kind of functions are called frequently?

25



Frequently Called Functions

Identification of functions which are frequently called from different functions

• allows the identification of API functions in statically-linked executables

• can sometimes also detect string decryption & hash functions in malware

What kind of functions are called frequently?

25



Frequently Called Functions

Identification of functions which are frequently called from different functions

• allows the identification of API functions in statically-linked executables

• can sometimes also detect string decryption & hash functions in malware

What kind of functions are called frequently?

25



Frequently Called Functions

Identification of functions which are frequently called from different functions

• allows the identification of API functions in statically-linked executables

• can sometimes also detect string decryption & hash functions in malware

What kind of functions are called frequently?

25



Frequently Called API Functions

• memory management

• data movement

• string operations

• file I/O operations

26



Example: XOR DDoS (Malware)

Most called functions (from unique callers) in the statically-linked malware:

free 293
memcpy 191
strlen 184
memset 174
__libc_malloc 151
__lll_unlock_wake_private 148
__lll_lock_wait_private 122
ptmalloc_init 114
__strtol_internal 99
strcmp 93

frequently called API functions

27



Example: XOR DDoS (Malware)

Most called functions (from unique callers) in the statically-linked malware:

free 293
memcpy 191
strlen 184
memset 174
__libc_malloc 151
__lll_unlock_wake_private 148
__lll_lock_wait_private 122
ptmalloc_init 114
__strtol_internal 99
strcmp 93

frequently called API functions

27



Example: XOR DDoS (Malware)

Most called functions (from unique callers) in the statically-linked malware:

free 293
memcpy 191
strlen 184
memset 174
__libc_malloc 151
__lll_unlock_wake_private 148
__lll_lock_wait_private 122
ptmalloc_init 114
__strtol_internal 99
strcmp 93

frequently called API functions

27



Example: PlugX (Malware)

Most called functions (from unique callers) and their number of calls:

crc32 1253
LoadLibraryA 1253
__seterrormode 320

hash-based import hidingpotential clustering of functions

28



Example: PlugX (Malware)

Most called functions (from unique callers) and their number of calls:

crc32 1253
LoadLibraryA 1253
__seterrormode 320

hash-based import hidingpotential clustering of functions

28



Example: PlugX (Malware)

Most called functions (from unique callers) and their number of calls:

crc32 1253
LoadLibraryA 1253
__seterrormode 320

hash-based import hiding

potential clustering of functions

28



Example: PlugX (Malware)

Most called functions (from unique callers) and their number of calls:

crc32 1253
LoadLibraryA 1253
__seterrormode 320

hash-based import hidingpotential clustering of functions

28



Example: PlugX (Malware)

Most called functions (from unique callers) and their number of calls:

crc32 1253
LoadLibraryA 1253
__seterrormode 320

hash-based import hiding

potential clustering of functions

28



Identification of State Machines



State Machine Heuristic

30



State Machines

Identification of functions with loop-based dispatching routines

while(true) {
switch(state) {

case state_0: ...
case state_1: ...
...
case state_n: ...

}
}

• state machines often implement a complex program logic

31



State Machines

Identification of functions with loop-based dispatching routines

while(true) {
switch(state) {

case state_0: ...
case state_1: ...
...
case state_n: ...

}
}

• state machines often implement a complex program logic

31



State Machines

Identification of functions with loop-based dispatching routines

while(true) {
switch(state) {

case state_0: ...
case state_1: ...
...
case state_n: ...

}
}

• state machines often implement a complex program logic

31



Complex State Machines

• file format parsing

• input validation & sanitization

• network protocol dispatching

• C&C server communication & command dispatching

• data encoding/decoding

32



State Machine Heuristic

Controlled Blocks

Controller}

#controlled blocks
#blocks in the function

33



State Machine Heuristic

Controlled Blocks

Controller}

#controlled blocks
#blocks in the function

33



Examples

PlugX (Malware)

• C&C communication & command dispatching

ls

• recursive directory traversal

gcc

• file parsing and tokenizing

34



Examples

PlugX (Malware)

• C&C communication & command dispatching

ls

• recursive directory traversal

gcc

• file parsing and tokenizing

34



Examples

PlugX (Malware)

• C&C communication & command dispatching

ls

• recursive directory traversal

gcc

• file parsing and tokenizing

34



Uncommon Instruction Sequences





Observation



Statistical Analysis of Assembly Code



Common Instruction Sequences

push rbp
mov rbp, rsp
push rbx
push rax
mov rbx, qword [rdi+0x30]
mov edi, dword [rdi+0x38]
call _strerror
lea rdi, [0x7bc6]
mov rsi, rbx
mov rdx, rax
xor eax, eax
call _warnx
mov byte [0x8678], 0x1
add rsp, 0x8
pop rbx
pop rbp
retn

prologues and epiloguesfunction callsdata movement

39



Common Instruction Sequences

push rbp
mov rbp, rsp
push rbx
push rax
mov rbx, qword [rdi+0x30]
mov edi, dword [rdi+0x38]
call _strerror
lea rdi, [0x7bc6]
mov rsi, rbx
mov rdx, rax
xor eax, eax
call _warnx
mov byte [0x8678], 0x1
add rsp, 0x8
pop rbx
pop rbp
retn

prologues and epiloguesfunction callsdata movement

39



Common Instruction Sequences

push rbp
mov rbp, rsp
push rbx
push rax
mov rbx, qword [rdi+0x30]
mov edi, dword [rdi+0x38]
call _strerror
lea rdi, [0x7bc6]
mov rsi, rbx
mov rdx, rax
xor eax, eax
call _warnx
mov byte [0x8678], 0x1
add rsp, 0x8
pop rbx
pop rbp
retn

prologues and epilogues

function callsdata movement

39



Common Instruction Sequences

push rbp
mov rbp, rsp
push rbx
push rax
mov rbx, qword [rdi+0x30]
mov edi, dword [rdi+0x38]
call _strerror
lea rdi, [0x7bc6]
mov rsi, rbx
mov rdx, rax
xor eax, eax
call _warnx
mov byte [0x8678], 0x1
add rsp, 0x8
pop rbx
pop rbp
retn

prologues and epiloguesfunction callsdata movement

39



Common Instruction Sequences

push rbp
mov rbp, rsp
push rbx
push rax
mov rbx, qword [rdi+0x30]
mov edi, dword [rdi+0x38]
call _strerror
lea rdi, [0x7bc6]
mov rsi, rbx
mov rdx, rax
xor eax, eax
call _warnx
mov byte [0x8678], 0x1
add rsp, 0x8
pop rbx
pop rbp
retn

prologues and epilogues

function calls

data movement

39



Common Instruction Sequences

push rbp
mov rbp, rsp
push rbx
push rax
mov rbx, qword [rdi+0x30]
mov edi, dword [rdi+0x38]
call _strerror
lea rdi, [0x7bc6]
mov rsi, rbx
mov rdx, rax
xor eax, eax
call _warnx
mov byte [0x8678], 0x1
add rsp, 0x8
pop rbx
pop rbp
retn

prologues and epiloguesfunction callsdata movement

39



Common Instruction Sequences

push rbp
mov rbp, rsp
push rbx
push rax
mov rbx, qword [rdi+0x30]
mov edi, dword [rdi+0x38]
call _strerror
lea rdi, [0x7bc6]
mov rsi, rbx
mov rdx, rax
xor eax, eax
call _warnx
mov byte [0x8678], 0x1
add rsp, 0x8
pop rbx
pop rbp
retn

prologues and epiloguesfunction calls

data movement

39



Uncommon Instruction Sequences

Identification of functions with a large number of unusual instruction sequences

• intensive use of floating-point instructions

• cryptographic implementations

• obfuscated code

40



Statistical Analysis

ground truth of the 1,000 most common instruction sequences:

mov mov mov
mov call mov
mov mov call

…
sar mov mov

How many instruction sequences are not in the ground truth?

architecture-agnostic implementation based on intermediate representations

41



Statistical Analysis

ground truth of the 1,000 most common instruction sequences:

mov mov mov
mov call mov
mov mov call

…
sar mov mov

How many instruction sequences are not in the ground truth?

architecture-agnostic implementation based on intermediate representations

41



Statistical Analysis

ground truth of the 1,000 most common instruction sequences:

mov mov mov
mov call mov
mov mov call

…
sar mov mov

How many instruction sequences are not in the ground truth?

architecture-agnostic implementation based on intermediate representations

41



Example: ci.dll (Windows Kernel Module)

Functions with the most uncommon instruction sequences (in descending order):

MinCryptIsFileRevoked
__security_check_cookie
SymCryptFdefMaskedCopyAsm
SymCryptSha256AppendBlocks_shani
SymCryptFdefRawMulMulx1024
SymCryptParallelSha256AppendBlocks_ymm
SymCryptParallelSha256AppendBlocks_xmm
SymCryptModElementIsZero
SymCryptFdefMontgomeryReduceMulx1024
CipIsSigningLevelRuntimeCustomizable
SymCryptFdefMontgomeryReduceMulx
Gvd5e6c0

cryptographic implementationsvirtualization-based obfuscation

42



Example: ci.dll (Windows Kernel Module)

Functions with the most uncommon instruction sequences (in descending order):

MinCryptIsFileRevoked
__security_check_cookie
SymCryptFdefMaskedCopyAsm
SymCryptSha256AppendBlocks_shani
SymCryptFdefRawMulMulx1024
SymCryptParallelSha256AppendBlocks_ymm
SymCryptParallelSha256AppendBlocks_xmm
SymCryptModElementIsZero
SymCryptFdefMontgomeryReduceMulx1024
CipIsSigningLevelRuntimeCustomizable
SymCryptFdefMontgomeryReduceMulx
Gvd5e6c0

cryptographic implementationsvirtualization-based obfuscation

42



Example: ci.dll (Windows Kernel Module)

Functions with the most uncommon instruction sequences (in descending order):

MinCryptIsFileRevoked
__security_check_cookie
SymCryptFdefMaskedCopyAsm
SymCryptSha256AppendBlocks_shani
SymCryptFdefRawMulMulx1024
SymCryptParallelSha256AppendBlocks_ymm
SymCryptParallelSha256AppendBlocks_xmm
SymCryptModElementIsZero
SymCryptFdefMontgomeryReduceMulx1024
CipIsSigningLevelRuntimeCustomizable
SymCryptFdefMontgomeryReduceMulx
Gvd5e6c0

cryptographic implementations

virtualization-based obfuscation

42



Example: ci.dll (Windows Kernel Module)

Functions with the most uncommon instruction sequences (in descending order):

MinCryptIsFileRevoked
__security_check_cookie
SymCryptFdefMaskedCopyAsm
SymCryptSha256AppendBlocks_shani
SymCryptFdefRawMulMulx1024
SymCryptParallelSha256AppendBlocks_ymm
SymCryptParallelSha256AppendBlocks_xmm
SymCryptModElementIsZero
SymCryptFdefMontgomeryReduceMulx1024
CipIsSigningLevelRuntimeCustomizable
SymCryptFdefMontgomeryReduceMulx
Gvd5e6c0

cryptographic implementationsvirtualization-based obfuscation

42



Example: ci.dll (Windows Kernel Module)

Functions with the most uncommon instruction sequences (in descending order):

MinCryptIsFileRevoked
__security_check_cookie
SymCryptFdefMaskedCopyAsm
SymCryptSha256AppendBlocks_shani
SymCryptFdefRawMulMulx1024
SymCryptParallelSha256AppendBlocks_ymm
SymCryptParallelSha256AppendBlocks_xmm
SymCryptModElementIsZero
SymCryptFdefMontgomeryReduceMulx1024
CipIsSigningLevelRuntimeCustomizable
SymCryptFdefMontgomeryReduceMulx
Gvd5e6c0

cryptographic implementations

virtualization-based obfuscation

42



Conclusion



Takeaways

1. efficient and architecture-agnostic heuristics
2. detects a wide range of interesting code constructs
3. false positives will occur

Useful methods to guide manual analysis in unknown binaries.

44



Takeaways

1. efficient and architecture-agnostic heuristics
2. detects a wide range of interesting code constructs
3. false positives will occur

Useful methods to guide manual analysis in unknown binaries.

44



Binary Ninja Plugin

https://github.com/mrphrazer/obfuscation_detection

45

https://github.com/mrphrazer/obfuscation_detection


Binary Ninja Plugin

https://github.com/mrphrazer/obfuscation_detection

45

https://github.com/mrphrazer/obfuscation_detection


Plugin Manager

46



Summary

• common approaches to navigate in large binaries
• architecture-agnostic detection heuristics to pinpoint intesting code constructs
• useful in many reverse engieering scenarios

https://github.com/mrphrazer/obfuscation_detection/

Tim Blazytko
Twitter @mr_phrazer

HOME synthesis.to

Envelope tim@blazytko.to

47

https://github.com/mrphrazer/obfuscation_detection/
https://twitter.com/mr_phrazer
https://synthesis.to
mailto:tim@blazytko.to


References

• “Automated Detection of Obfuscated Code” by Tim Blazytko
https://synthesis.to/2021/08/10/obfuscation_detection.html

• “Automated Detection of Control-flow Flattening” by Tim Blazytko
https://synthesis.to/2021/03/03/flattening_detection.html

• “Statistical Analysis to Detect Uncommon Code” by Tim Blazytko
https:
//synthesis.to/2023/01/26/uncommon_instruction_sequences.html

48

https://synthesis.to/2021/08/10/obfuscation_detection.html
https://synthesis.to/2021/03/03/flattening_detection.html
https://synthesis.to/2023/01/26/uncommon_instruction_sequences.html
https://synthesis.to/2023/01/26/uncommon_instruction_sequences.html

