
Workshop: Analysis of Virtualization-based Obfuscation

Tim Blazytko
@mr_phrazer
tim@blazytko.to
https://synthesis.to

https://twitter.com/mr_phrazer
mailto:tim@blazytko.to
https://synthesis.to

Personal Details

binary security researcher, co-founder of emproof GmbH and former PhD student

• research: code deobfuscation, fuzzing and root cause analysis

• full-time: design and evaluation of obfuscation techniques

• freelancing: reverse engineering and trainings

1

https://www.emproof.de/

Today

• basics of VM-based obfuscation

• manual analysis

• symbolic execution to guide manual analysis

• writing an SE-based disassembler

2

Slides, Code and Samples

https://github.com/mrphrazer/r2con2021_deobfuscation

3

https://github.com/mrphrazer/r2con2021_deobfuscation

Virtual Machine Basics

Virtual Machines

__secret_ip:

 mov edx, eax

 add edx, ebx

 mov eax, ebx

 mov ebx, edx

 loop __secret_ip

mov ecx, [esp+4]

xor eax, eax

mov ebx, 1

mov eax, ebx

ret

5

Virtual Machines

__secret_ip:

 mov edx, eax

 add edx, ebx

 mov eax, ebx

 mov ebx, edx

 loop __secret_ip

mov ecx, [esp+4]

xor eax, eax

mov ebx, 1

mov eax, ebx

ret

5

Virtual Machines

__secret_ip:

 mov edx, eax

 add edx, ebx

 mov eax, ebx

 mov ebx, edx

 loop __secret_ip

mov ecx, [esp+4]

xor eax, eax

mov ebx, 1

mov eax, ebx

ret

5

Virtual Machines

__bytecode:
 vld r0
 vpop r1
 vld r2
 vld r1
 vadd r1
 vld r2
 vpop r0

vld r1
vpop r2
vldi #1
vld r3
vsub r3
vld #0
veq r3
vbr0 #-0E

➟

made-up instruction set

__secret_ip:

 mov edx, eax

 add edx, ebx

 mov eax, ebx

 mov ebx, edx

 loop __secret_ip

mov ecx, [esp+4]

xor eax, eax

mov ebx, 1

mov eax, ebx

ret

5

Virtual Machines

➟

made-up instruction set

__secret_ip:

 push __bytecode

 call vm_entry

__bytecode:
 db 54 68 69 73 20 64 6f
 db 65 73 6e 27 74 20 6c
 db 6f 6f 6b 20 6c 69 6b
 db 65 20 61 6e 79 74 68
 db 69 6e 67 20 74 6f 20
 db 6d 65 2e de ad be ef

mov ecx, [esp+4]

xor eax, eax

mov ebx, 1

mov eax, ebx

ret

5

Virtual Machines

➟

made-up instruction set

__secret_ip:

 push __bytecode

 call vm_entry

__bytecode:
 db 54 68 69 73 20 64 6f
 db 65 73 6e 27 74 20 6c
 db 6f 6f 6b 20 6c 69 6b
 db 65 20 61 6e 79 74 68
 db 69 6e 67 20 74 6f 20
 db 6d 65 2e de ad be ef?

mov ecx, [esp+4]

xor eax, eax

mov ebx, 1

mov eax, ebx

ret

5

Virtual Machines

Core Components

VM Entry/Exit Context Switch: native context⇔ virtual context
VM Dispatcher Fetch–Decode–Execute loop
Handler Table Individual VM ISA instruction semantics

• Entry Copy native context (registers, flags) to VM context.

• Exit Copy VM context back to native context.

• Mapping from native to virtual registers is often 1:1.

6

Virtual Machines

Core Components

VM Entry/Exit Context Switch: native context⇔ virtual context
VM Dispatcher Fetch–Decode–Execute loop
Handler Table Individual VM ISA instruction semantics

1. Fetch and decode instruction

2. Forward virtual instruction pointer

3. Look up handler for opcode in handler table

4. Invoke handler

FDE
look up

handle_vpush

handle_vadd

handle_vxor

handle_vexit

handle_vpop
…

handle_vpush

handle_vadd

handle_vxor

handle_vexit

handle_vpop

…

6

Virtual Machines

Core Components

VM Entry/Exit Context Switch: native context⇔ virtual context
VM Dispatcher Fetch–Decode–Execute loop
Handler Table Individual VM ISA instruction semantics

• Table of function pointers indexed by opcode

• One handler per virtual instruction

• Each handler decodes operands and
updates VM context

FDE
look up

handle_vpush

handle_vadd

handle_vxor

handle_vexit

handle_vpop
…

handle_vpush

handle_vadd

handle_vxor

handle_vexit

handle_vpop

…

6

Virtual Machines

7

Virtual Machines

FDE

Individual Handlers

} VM Entry

VM Dispatcher (FDE)}
look up

handle_vpush

handle_vadd

handle_vxor

handle_vexit

handle_vpop
…

handle_vpush

handle_vadd

handle_vxor

handle_vexit

handle_vpop

…

VM Exit
(as handler)

7

Data Structures

• bytecode

• array of bytes that encodes the protected code

• will be interpreted by the virtual machine

• virtual instruction pointer

• points to the current instruction in the bytecode

• incremented after each instruction by its size

• virtual stack pointer

• points to the VM-internal top of stack (TOS)

• modified by vpush and vpop instructions

8

Data Structures

• bytecode

• array of bytes that encodes the protected code

• will be interpreted by the virtual machine

• virtual instruction pointer

• points to the current instruction in the bytecode

• incremented after each instruction by its size

• virtual stack pointer

• points to the VM-internal top of stack (TOS)

• modified by vpush and vpop instructions

8

Data Structures

• bytecode

• array of bytes that encodes the protected code

• will be interpreted by the virtual machine

• virtual instruction pointer

• points to the current instruction in the bytecode

• incremented after each instruction by its size

• virtual stack pointer

• points to the VM-internal top of stack (TOS)

• modified by vpush and vpop instructions

8

Virtual Machines

__vm_dispatcher:
mov bl, [rsi]
inc rsi
movzx rax, bl
jmp __handler_table[rax * 8]

VM Dispatcher

rsi – virtual instruction pointer
rbp – VM context

__handle_vnor:
mov rcx, [rbp]
mov rbx, [rbp + 4]
not rcx
not rbx
and rcx, rbx
mov [rbp + 4], rcx
pushf
pop [rbp]
jmp __vm_dispatcher

Handler performing nor
(with flag side-effects)

9

Virtual Machines

__vm_dispatcher:
mov bl, [rsi]
inc rsi
movzx rax, bl
jmp __handler_table[rax * 8]

VM Dispatcher

rsi – virtual instruction pointer
rbp – VM context

__handle_vnor:
mov rcx, [rbp]
mov rbx, [rbp + 4]
not rcx
not rbx
and rcx, rbx
mov [rbp + 4], rcx
pushf
pop [rbp]
jmp __vm_dispatcher

Handler performing nor
(with flag side-effects)

9

Instruction Handler Arguments

Instruction handler can pass arguments through a stack or in registers.

• stack-based architecture
• pop arguments from stack
• push results onto stack
• examples: JVM, CPython, WebAssembly, …

• register-based architecture
• pass arguments in virtual registers
• store results in virtual registers
• examples: Dalvik, Lua, LLVM, …

• hybrid architectures possible

10

Breaking Virtual Machine Obfuscation

• locate the bytecode that is interpreted by the VM

• understand the VM architecture/context

• reverse engineer the handler semantics

• reconstruct the VM control flow

• reconstruct the the high-level control flow

11

Manual Analysis

Goals

Get a better understanding of the VM:

• identify basic VM components and structures

• detect patterns in handlers

• recover handler semantics

13

Sample

• function that implements iterative Fibonacci

• basic virtual machine protection generated with Tigress1

• virtual machine layout

• stack-based virtual machine

• virtual instruction and stack pointer

• nested tree-based dispatching

• 11 VM handlers

1https://tigress.wtf/

14

https://tigress.wtf/

Task #1: Identification of VM Components

Open the sample vm_basic.bin and start your analysis at 0x115a.

• Locate the VM dispatcher.

• Locate the bytecode.

• Identify some basic blocks that implement handlers.

• What are the functions of rdx and rcx?

15

Task #2: Recovering Handler Semantics I

Open the sample vm_basic.bin and analyze the handler at 0x11e1.

• How fetches the handler its argument?

• What does it do with the argument?

• What else does the handler do?

16

Task #3: Recovering Handler Semantics II

Open the sample vm_basic.bin and analyze the handler at 0x11a9.

• How fetches the handler its arguments?

• What does it compute?

• What else does the handler do?

17

Task #4: Recovering Handler Semantics IV

Open the sample vm_basic.bin and analyze the handler at 0x1281.

• What does the handler check?

• Why does it branch?

• What does the handler do with rdx and rax?

18

Lessons Learned

• rdx is virtual instruction pointer, rcx is virtual stack pointer

• handlers push and pop arguments from/onto the stack

• handlers update the virtual instruction and stack pointers

• handler 0x11e1 loads a constant from the bytecode and pushes it onto the stack

• handler 0x11a9 implements a stack-based addition

• handler 0x1281 implements a conditional branch

19

Symbolic Execution

Symbolic Execution

• computer algebra system for assembly code

• symbolic summaries of instructions, basic blocks and paths

• summaries provide detailed insights and reveal patterns

⇒ supports manual VM analysis

• can be mixed with concrete values (dynamic/concolic execution)

• can automatically follow the execution flow (interactive emulator/debugger)

⇒ dynamic VM disassembler

21

Symbolic Execution

__handle_vnor:

•

mov rcx, [rbp]

•

mov rbx, [rbp + 4]

•

not rcx

•

not rbx

•

and rcx, rbx

•

mov [rbp + 4], rcx

•

pushf

•

pop [rbp]

•

jmp __vm_dispatcher

Handler performing nor
(with flag side-effects)

rcx ← [rbp]
rbx ← [rbp+ 4]
rcx ← ¬ rcx = ¬ [rbp]
rbx ← ¬ rbx = ¬ [rbp+ 4]
rcx ← rcx ∧ rbx

= (¬ [rbp]) ∧ (¬ [rbp+ 4])

[rbp+ 4] ← rcx = [rbp] ↓ [rbp+ 4]

rsp ← rsp− 4
[rsp] ← flags
[rbp] ← [rsp] = flags
rsp ← rsp+ 4

22

Symbolic Execution

__handle_vnor:
• mov rcx, [rbp]

•

mov rbx, [rbp + 4]

•

not rcx

•

not rbx

•

and rcx, rbx

•

mov [rbp + 4], rcx

•

pushf

•

pop [rbp]

•

jmp __vm_dispatcher

Handler performing nor
(with flag side-effects)

rcx ← [rbp]

rbx ← [rbp+ 4]
rcx ← ¬ rcx = ¬ [rbp]
rbx ← ¬ rbx = ¬ [rbp+ 4]
rcx ← rcx ∧ rbx

= (¬ [rbp]) ∧ (¬ [rbp+ 4])

[rbp+ 4] ← rcx = [rbp] ↓ [rbp+ 4]

rsp ← rsp− 4
[rsp] ← flags
[rbp] ← [rsp] = flags
rsp ← rsp+ 4

22

Symbolic Execution

__handle_vnor:

•

mov rcx, [rbp]
• mov rbx, [rbp + 4]

•

not rcx

•

not rbx

•

and rcx, rbx

•

mov [rbp + 4], rcx

•

pushf

•

pop [rbp]

•

jmp __vm_dispatcher

Handler performing nor
(with flag side-effects)

rcx ← [rbp]
rbx ← [rbp+ 4]

rcx ← ¬ rcx = ¬ [rbp]
rbx ← ¬ rbx = ¬ [rbp+ 4]
rcx ← rcx ∧ rbx

= (¬ [rbp]) ∧ (¬ [rbp+ 4])

[rbp+ 4] ← rcx = [rbp] ↓ [rbp+ 4]

rsp ← rsp− 4
[rsp] ← flags
[rbp] ← [rsp] = flags
rsp ← rsp+ 4

22

Symbolic Execution

__handle_vnor:

•

mov rcx, [rbp]

•

mov rbx, [rbp + 4]
• not rcx

•

not rbx

•

and rcx, rbx

•

mov [rbp + 4], rcx

•

pushf

•

pop [rbp]

•

jmp __vm_dispatcher

Handler performing nor
(with flag side-effects)

rcx ← [rbp]
rbx ← [rbp+ 4]
rcx ← ¬ rcx = ¬ [rbp]

rbx ← ¬ rbx = ¬ [rbp+ 4]
rcx ← rcx ∧ rbx

= (¬ [rbp]) ∧ (¬ [rbp+ 4])

[rbp+ 4] ← rcx = [rbp] ↓ [rbp+ 4]

rsp ← rsp− 4
[rsp] ← flags
[rbp] ← [rsp] = flags
rsp ← rsp+ 4

22

Symbolic Execution

__handle_vnor:

•

mov rcx, [rbp]

•

mov rbx, [rbp + 4]

•

not rcx
• not rbx

•

and rcx, rbx

•

mov [rbp + 4], rcx

•

pushf

•

pop [rbp]

•

jmp __vm_dispatcher

Handler performing nor
(with flag side-effects)

rcx ← [rbp]
rbx ← [rbp+ 4]
rcx ← ¬ rcx = ¬ [rbp]
rbx ← ¬ rbx = ¬ [rbp+ 4]

rcx ← rcx ∧ rbx
= (¬ [rbp]) ∧ (¬ [rbp+ 4])

[rbp+ 4] ← rcx = [rbp] ↓ [rbp+ 4]

rsp ← rsp− 4
[rsp] ← flags
[rbp] ← [rsp] = flags
rsp ← rsp+ 4

22

Symbolic Execution

__handle_vnor:

•

mov rcx, [rbp]

•

mov rbx, [rbp + 4]

•

not rcx

•

not rbx
• and rcx, rbx

•

mov [rbp + 4], rcx

•

pushf

•

pop [rbp]

•

jmp __vm_dispatcher

Handler performing nor
(with flag side-effects)

rcx ← [rbp]
rbx ← [rbp+ 4]
rcx ← ¬ rcx = ¬ [rbp]
rbx ← ¬ rbx = ¬ [rbp+ 4]
rcx ← rcx ∧ rbx

= (¬ [rbp]) ∧ (¬ [rbp+ 4])

[rbp+ 4] ← rcx = [rbp] ↓ [rbp+ 4]

rsp ← rsp− 4
[rsp] ← flags
[rbp] ← [rsp] = flags
rsp ← rsp+ 4

22

Symbolic Execution

__handle_vnor:

•

mov rcx, [rbp]

•

mov rbx, [rbp + 4]

•

not rcx

•

not rbx
• and rcx, rbx

•

mov [rbp + 4], rcx

•

pushf

•

pop [rbp]

•

jmp __vm_dispatcher

Handler performing nor
(with flag side-effects)

rcx ← [rbp]
rbx ← [rbp+ 4]
rcx ← ¬ rcx = ¬ [rbp]
rbx ← ¬ rbx = ¬ [rbp+ 4]
rcx ← rcx ∧ rbx

= (¬ [rbp]) ∧ (¬ [rbp+ 4])
= [rbp] ↓ [rbp+ 4]

[rbp+ 4] ← rcx = [rbp] ↓ [rbp+ 4]

rsp ← rsp− 4
[rsp] ← flags
[rbp] ← [rsp] = flags
rsp ← rsp+ 4

22

Symbolic Execution

__handle_vnor:

•

mov rcx, [rbp]

•

mov rbx, [rbp + 4]

•

not rcx

•

not rbx

•

and rcx, rbx
• mov [rbp + 4], rcx

•

pushf

•

pop [rbp]

•

jmp __vm_dispatcher

Handler performing nor
(with flag side-effects)

rcx ← [rbp]
rbx ← [rbp+ 4]
rcx ← ¬ rcx = ¬ [rbp]
rbx ← ¬ rbx = ¬ [rbp+ 4]
rcx ← rcx ∧ rbx

= (¬ [rbp]) ∧ (¬ [rbp+ 4])
= [rbp] ↓ [rbp+ 4]

[rbp+ 4] ← rcx = [rbp] ↓ [rbp+ 4]

rsp ← rsp− 4
[rsp] ← flags
[rbp] ← [rsp] = flags
rsp ← rsp+ 4

22

Symbolic Execution

__handle_vnor:

•

mov rcx, [rbp]

•

mov rbx, [rbp + 4]

•

not rcx

•

not rbx

•

and rcx, rbx

•

mov [rbp + 4], rcx
• pushf

•

pop [rbp]

•

jmp __vm_dispatcher

Handler performing nor
(with flag side-effects)

rcx ← [rbp]
rbx ← [rbp+ 4]
rcx ← ¬ rcx = ¬ [rbp]
rbx ← ¬ rbx = ¬ [rbp+ 4]
rcx ← rcx ∧ rbx

= (¬ [rbp]) ∧ (¬ [rbp+ 4])
= [rbp] ↓ [rbp+ 4]

[rbp+ 4] ← rcx = [rbp] ↓ [rbp+ 4]

rsp ← rsp− 4
[rsp] ← flags

[rbp] ← [rsp] = flags
rsp ← rsp+ 4

22

Symbolic Execution

__handle_vnor:

•

mov rcx, [rbp]

•

mov rbx, [rbp + 4]

•

not rcx

•

not rbx

•

and rcx, rbx

•

mov [rbp + 4], rcx

•

pushf
• pop [rbp]

•

jmp __vm_dispatcher

Handler performing nor
(with flag side-effects)

rcx ← [rbp]
rbx ← [rbp+ 4]
rcx ← ¬ rcx = ¬ [rbp]
rbx ← ¬ rbx = ¬ [rbp+ 4]
rcx ← rcx ∧ rbx

= (¬ [rbp]) ∧ (¬ [rbp+ 4])
= [rbp] ↓ [rbp+ 4]

[rbp+ 4] ← rcx = [rbp] ↓ [rbp+ 4]

rsp ← rsp− 4
[rsp] ← flags
[rbp] ← [rsp] = flags
rsp ← rsp+ 4

22

Symbolic Execution

__handle_vnor:

•

mov rcx, [rbp]

•

mov rbx, [rbp + 4]

•

not rcx

•

not rbx

•

and rcx, rbx

•

mov [rbp + 4], rcx

•

pushf

•

pop [rbp]
• jmp __vm_dispatcher

Handler performing nor
(with flag side-effects)

rcx ← [rbp]
rbx ← [rbp+ 4]
rcx ← ¬ rcx = ¬ [rbp]
rbx ← ¬ rbx = ¬ [rbp+ 4]
rcx ← rcx ∧ rbx

= (¬ [rbp]) ∧ (¬ [rbp+ 4])
= [rbp] ↓ [rbp+ 4]

[rbp+ 4] ← rcx = [rbp] ↓ [rbp+ 4]

rsp ← rsp− 4
[rsp] ← flags
[rbp] ← [rsp] = flags
rsp ← rsp+ 4

22

Symbolic Execution on the Binary Level

• disassemble a given code location

• lift the disassembled code into an intermediate representation

• free of side effects (explicit formulas for implicit flag and stack pointer updates)

• common language for various architectures (x86, arm, mips, …)

• pre-configure the symbolic state with concrete values (for concolic execution)

• symbolically execute the code starting at a given address

Today: Based on the Miasm reverse engineering framework2

2https://github.com/cea-sec/miasm

23

https://github.com/cea-sec/miasm

Task #5: SE-based Handler Analysis I

Use symbolic_execution.py and analyze the handler at 0x11e1.

• Can you spot the virtual instruction pointer update?

• Try to locate the handler’s core semantics.

• What else do you see?

Reminder: The handler loads a constant (bytecode) and pushes it onto the stack.

24

Task #6: SE-based Handler Analysis II

Use symbolic_execution.py and analyze the handler at 0x11a9.

• Can you spot the virtual instruction pointer update?

• Try to locate the handler’s core semantics.

• Try to understand how the parameters are derived.

Reminder: The handler performs a stack-based addition.

25

Lessons Learned

• RDX = RDX + 0x1

• increment the virtual instruction pointer by 1

• RDX = RDX + 0x5

• increment the virtual instruction pointer by 5

• @32[RCX + 0x8] = @32[RDX + 0x1]

• load a constant from the bytecode and store it onto the stack

• @32[RCX + 0xFFFFFFFFFFFFFFF8] = @32[RCX] + @32[RCX +
0xFFFFFFFFFFFFFFF8]

• pop to values from the stack, add them and push the result onto the stack

26

Writing an SE-based Disassembler

Overview

• up until now: manual analysis to get a basic VM understanding

• VM components and structures

• basic VM layout

• handlers and (some) of their semantics

• next step: automated VM analysis

• goal: SE-based disassembler

• interactive approach between manual analysis and automation

28

VM Deobfuscation Automation Primer

1. build a symbolic execution engine that automatically follows the execution flow

2. start SE at the VM entry

3. each time SE stops, check why and hardcode register/memory values (bytecode, …)

4. if SE reaches VM exit, extend VM executor

• add knowledge about handlers

• dump values

• reconstruct control-flow graph

29

Task #7: Following the Execution Flow

Modify follow_execution_flow.py until the symbolic execution leaves the VM.

• Execute the script and check where it stops.

• Add more and more knowledge about the VM and re-run the script.

• Use multiple concrete inputs for the VM and derive their corresponding outputs.

30

Task #8: Building a VM Disassembler

Modify vm_disassembler.py and enrich the disassembler output as much as possible.

• Start with the handlers you already know.

• Reverse engineer additional handlers and improve the disassembler output.

• If possible, dump intermediate values and add them to the output.

Hint: The handlers executed before conditional jumps are comparisons.

31

Task #9: Reconstruction of VM Disassembly

Run vm_disassembler_final.py. Try to reconstruct the underlying algorithm.

• Have a look at the disassembly. Can you identify patterns?

• Try to simplify the disassembly. Can you omit certain instructions?

• Can you rewrite multiple instructions in shorter sequences?

• Try to map the VM disassembly to the original code.

Hint: The underlying algorithm implements an iterative Fibonacci calculation.

32

Lessons Learned

• goto can be omitted

• PUSH 0x0 ; PUSHPTR var_0x4 ; POPTOVAR

• var_0x4 := 0

• PUSHPTR var_0x8 ; PUSHFROMVAR ; PUSHPTR var_0x4 ; PUSHFROMVAR ;
ADD ; PUSHPTR ; POPTOVAR

• var_0xc := var_0x8 + var_0x4

33

Conclusion

Takeaways

• VM analysis can be time-consuming

• mixture of manual analysis and automation

• automation can be cumbersome to implement (API calls, external data, …)

• way more advanced VMs exist, but approach stays the same

35

Conclusion

Today:

• manual analysis of a VM

• writing an SE-based disassembler

• reconstruction of VM disassembly

• slides, code and samples:
https://github.com/mrphrazer/r2con2021_deobfuscation

Reach out for questions or discussions:

@mr_phrazer

https://synthesis.to

Thank you very much for your active participation!

36

https://github.com/mrphrazer/r2con2021_deobfuscation
https://twitter.com/mr_phrazer
https://synthesis.to

