Iy <

Workshop: Analysis of Virtualization-based Obfuscation

Tim Blazytko
amr_phrazer
timablazytko.to
https://synthesis.to

https://twitter.com/mr_phrazer
mailto:tim@blazytko.to
https://synthesis.to

Personal Details

binary security researcher, co-founder of emproof GmbH and former PhD student

- research: code deobfuscation, fuzzing and root cause analysis
- full-time: design and evaluation of obfuscation techniques

- freelancing: reverse engineering and trainings

https://www.emproof.de/

- basics of VM-based obfuscation
- manual analysis
- symbolic execution to guide manual analysis

- writing an SE-based disassembler

Slides, Code and Samples

https://github.com/mrphrazer/r2con2021_deobfuscation

https://github.com/mrphrazer/r2con2021_deobfuscation

Virtual Machine Basics

Virtual Machines

mov ecx, [esp+4]
Xor eax, eax
mov ebx, 1

__secret_ip:
mov edx, eax
add edx, ebx
mov eax, ebx
mov ebx, edx
loop __secret_ip

mov eax, ebx
ret

Virtual Machines

mov ecx, [esp+4]
Xor eax, eax
mov ebx, 1

__secret_ip:
mov edx, eax
add edx, ebx

mov eax, ebx
mov ebx, edx
loop __secret_ip

mov eax, ebx
ret

Virtual Machines

mov ecx, [esp+4]
Xor eax, eax
mov ebx, 1

__secret_ip:
mov edx, eax
add edx, ebx

mov eax, ebx

OV ebx, edx
@ __secret_ip

ov eax, ebx
ret

Virtual Machines

mov ecx, [esp+4]) .
Xor eax, eax made-up instruction set

mov ebx, 1

s __bytecode: yid ri1
__secret_ip: vid 1o

vpop r2

mov edx, eax vpop ril vlidi #1

add edx, ebx III» vid 12 vid r3

mov eax, ebx ol vsub r3

0 ebx, edx vadd ri vid 40

’) vid r2 veq r3
__secret_1p vpop ro vbre #-0F

ov eax, ebx
ret

Virtual Machines

mov ecx, [esp+4]) .
Xor eax, eax made-up instruction set

mov ebx, 1

__secret_ip: __bytecode:

push __bytecode db 54 68 69 73 20 64 6f
- db 65 73 6e 27 74 20 6¢

call vm_entry) db 6f 6f 6b 20 6¢c 69 6b

db 65 20 61 6e 79 74 68
db 69 6e 67 20 74 6 20
db 6d 65 2e de ad be ef

mov eax, ebx
ret

Virtual Machines

mov ecx, [esp+4]) .
Xor eax, eax made-up instruction set

mov ebx, 1

__secret_ip: __bytecode:
push __bytecode db 54 68 69 73 20 64 6f
- db 65 73 6e 27 74 20 6¢
(L VLGS mp db 6f 6f 6b 20 6¢c 69 6b

db 65 20 61 6e 79 74 68
6e 67 20 74 6f 20
65 2e de ad be ef

mov eax, ebx
ret

Virtual Machines

Core Components

Context Switch: native context < virtual context
VM Dispatcher Fetch-Decode-Execute loop
Handler Table Individual VM ISA instruction semantics

- Entry Copy native context (registers, flags) to VM context.

- Exit Copy VM context back to native context.

- Mapping from native to virtual registers is often 1:1.

Virtual Machines

Core Components
VM Entry/Exit Context Switch: native context < virtual context
Fetch-Decode-Execute loop
Handler Table Individual VM ISA instruction semantics

—_

. Fetch and decode instruction — handle_vpush
handle_vadd

: : : : look
. Forward virtual instruction pointer FDE 09X HP_ oI handle_vxor

handle_vexit

2
3. Look up handler for opcode in handler table handle_vpop
4

. Invoke handler

Virtual Machines

Core Components
VM Entry/Exit Context Switch: native context < virtual context
VM Dispatcher Fetch-Decode-Execute loop

Individual VM ISA instruction semantics

* Table of function pointers indexed by opcode ~ —— :::g::_:zzzh
- One handler per virtual instruction FDE lookup_ e
handle_vexit
- Each handler decodes operands and handle_vpop
[—1
updates VM context

i la==pmaumn:
=

B

Virtual Machines

VM Entry

} VM Dispatcher (FDE)

— (I
———

Individual Handlers |—»VI\/\ Exit
(as handler)

Data Structures

- bytecode

- array of bytes that encodes the protected code

- will be interpreted by the virtual machine

Data Structures

- bytecode
- array of bytes that encodes the protected code
- will be interpreted by the virtual machine

- virtual instruction pointer

- points to the current instruction in the bytecode

- incremented after each instruction by its size

Data Structures

- bytecode
- array of bytes that encodes the protected code
- will be interpreted by the virtual machine
- virtual instruction pointer
- points to the current instruction in the bytecode
- incremented after each instruction by its size
- virtual stack pointer

- points to the VM-internal top of stack (TOS)

- modified by vpush and vpop instructions

Virtual Machines

__vm_dispatcher:
mov bl, [rsil]

inc rsi
movzx rax, bl
jmp __handler_table[rax * 8]

VM Dispatcher

rsi - virtual instruction pointer
rbp - VM context

Virtual Machines

__handle_vnor:

__vm_dispatcher: mov rcx, [rbpl

mov bl, [rsil mov rbx, [rbp + 4]

inc rsi not rcx

movzx rax, bl not rbx

jmp __handler_table[rax * 8] and rcx, rbx
mov [rbp + 4], rcx
pushf

VM Dispatcher pop [rbp]

jmp __vm_dispatcher

rsi - virtual instruction pointer
rbp - VM context Handler performing nor
(with flag side-effects)

Instruction Handler Arguments

Instruction handler can pass arguments through a stack or in registers.

- stack-based architecture

- pop arguments from stack
- push results onto stack
- examples: JVM, CPython, WebAssembly, ...

- register-based architecture

-+ pass arguments in virtual registers
- store results in virtual registers
- examples: Dalvik, Lua, LLVM, ...

- hybrid architectures possible

Breaking Virtual Machine Obfuscation

- locate the bytecode that is interpreted by the VM
- understand the VM architecture/context

- reverse engineer the handler semantics

- reconstruct the VM control flow

- reconstruct the the high-level control flow

1

Manual Analysis

Get a better understanding of the VM:

- identify basic VM components and structures
- detect patterns in handlers

+ recover handler semantics

- function that implements iterative Fibonacci
- basic virtual machine protection generated with Tigress'

- virtual machine layout

- stack-based virtual machine
- virtual instruction and stack pointer
- nested tree-based dispatching

- 11 VM handlers

Thttps://tigress.wtf/

14

https://tigress.wtf/

Task #1: Identification of VM Components

Open the sample vm_basic.bin and start your analysis at @x115a.

- Locate the VM dispatcher.
- Locate the bytecode.
- ldentify some basic blocks that implement handlers.

- What are the functions of rdx and rcx?

Task #2: Recovering Handler Semantics |

Open the sample vm_basic.bin and analyze the handler at Ox11e1.

- How fetches the handler its argument?
- What does it do with the argument?

- What else does the handler do?

Task #3: Recovering Handler Semantics Il

Open the sample vm_basic.bin and analyze the handler at @x11a9.

- How fetches the handler its arguments?
- What does it compute?

- What else does the handler do?

Task #4: Recovering Handler Semantics IV

Open the sample vm_basic.bin and analyze the handler at 0x1281.

- What does the handler check?
- Why does it branch?

- What does the handler do with rdx and rax?

Lessons Learned

- rdx is virtual instruction pointer, rcx is virtual stack pointer

- handlers push and pop arguments from/onto the stack

- handlers update the virtual instruction and stack pointers

- handler @x11e1l loads a constant from the bytecode and pushes it onto the stack
- handler ©x11a9 implements a stack-based addition

- handler ©x1281 implements a conditional branch

19

Symbolic Execution

Symbolic Execution

- computer algebra system for assembly code
- symbolic summaries of instructions, basic blocks and paths

- summaries provide detailed insights and reveal patterns

= supports manual VM analysis
- can be mixed with concrete values (dynamic/concolic execution)

- can automatically follow the execution flow (interactive emulator/debugger)

= dynamic VM disassembler

21

Symbolic Execution

__handle_vnor:
mov rcx, [rbp]
mov rbx, [rbp + 4]
not rcx
not rbx
and rcx, rbx
mov [rbp + 4], rcx

pushf
pop [rbp]
jmp __vm_dispatcher

Handler performing nor
(with flag side-effects)

Symbolic Execution

rex < [rbp)
__handle_vnor:

e mov rcx, [rbp]
mov rbx, [rbp + 4]
not rcx
not rbx
and rcx, rbx
mov [rbp + 4], rcx

pushf
pop [rbp]
jmp __vm_dispatcher

Handler performing nor
(with flag side-effects)

Symbolic Execution

rex < [rbp)
__handle_vnor:

mov rcx, [rbp]
e mov rbx, [rbp + 4]
not rcx
not rbx
and rcx, rbx
mov [rbp + 4], rcx

rbx < [rbp+ 4]

pushf
pop [rbp]
jmp __vm_dispatcher

Handler performing nor
(with flag side-effects)

Symbolic Execution

b
__handle_vnor: < [rbp]

mov rcx, [rbp]

mov rbx, [rbp + 4]
e not rcx

not rbx

and rcx, rbx

mov [rbp + 4], rcx

rbx < [rbp+ 4]

rex <= —rex = - [rbp]

pushf
pop [rbp]
jmp __vm_dispatcher

Handler performing nor
(with flag side-effects)

Symbolic Execution

[rbp]

rex «—
< [rbp + 4]
-
-

__handle_vnor:
mov rcx, [rbp]
mov rbx, [rbp + 4]
not rcx rbx
e not rbx
and rcx, rbx
mov [rbp + 4], rcx

rex —rex = — [rbp]

—rbx = = [rbp + 4]

pushf
pop [rbp]
jmp __vm_dispatcher

Handler performing nor
(with flag side-effects)

Symbolic Execution

Icx
__handle_vnor:
rbx
mov rcx, [rbp]
mov rbx, [rbp + 4]
not rcx
not rbx rex

e and rcx, rbx
mov [rbp + 4], rcx

pushf
pop [rbp]
jmp __vm_dispatcher

Handler performing nor
(with flag side-effects)

S Y N

[rbp]

[rbp + 4]

—rex = = [rbp]
—rbx = = [rbp + 4]

= (=[rbp]) A (= [rbp + 4])

Symbolic Execution

__handle_vnor:
mov rcx, [rbp]
mov rbx, [rbp + 4]
not rcx
not rbx
e and rcx, rbx
mov [rbp + 4], rcx

pushf
pop [rbp]
jmp __vm_dispatcher

Handler performing nor
(with flag side-effects)

rex
rbx
rex
rbx

rcx

S Y N

[rbp]
[rbp + 4]
—rex = = [rbp]
—rbx = = [rbp + 4]
rex A rbx
= (=[rbp]) A (= [rbp + 4])

Symbolic Execution

__handle_vnor:
mov rcx, [rbp]
mov rbx, [rbp + 4]
not rcx
not rbx
and rcx, rbx
e mov [rbp + 4], rcx

pushf
pop [rbp]
jmp __vm_dispatcher

Handler performing nor
(with flag side-effects)

Icx
rbx
rex

rbx

[rbp + 4]

S Y N

[rbp]

[rbp + 4]

—rex = = [rbp]

—rbx = = [rbp + 4]

rex A rbx
= (= 1[rbp]) A (=[rbp + 4])
= [rbp] | [rbp + 4]
= [rbp] | [rbp + 4]

22

Symbolic Execution

__handle_vnor:
mov rcx, [rbp]
mov rbx, [rbp + 4]
not rcx
not rbx
and rcx, rbx
mov [rbp + 4], rcx

e pushf
pop [rbp]
jmp __vm_dispatcher

Handler performing nor
(with flag side-effects)

rex
rbx
rex
rbx

rcx

[rbp + 4]

rsp

[rsp]

S Y N

4

[rbp]

[rbp + 4]

—rex = = [rbp]

—rbx = = [rbp + 4]

rex A rbx
= (= 1[rbp]) A (=[rbp + 4])
= [rbp] | [rbp + 4]

rcx = [rbp] 4 [rbp + 4]

rsp—4
flags

22

Symbolic Execution

__handle_vnor:
mov rcx, [rbp]
mov rbx, [rbp + 4]
not rcx
not rbx
and rcx, rbx
mov [rbp + 4], rcx

pushf
e pop [rbp]
jmp __vm_dispatcher

Handler performing nor
(with flag side-effects)

rex
rbx
rex
rbx

rcx

[rbp + 4]

rsp
[rsp]

[rbp]
rsp

S Y N

4

T T

[rbp]

[rbp + 4]

—rex = = [rbp]

—rbx = = [rbp + 4]

rex A rbx
= (= 1[rbp]) A (=[rbp + 4])
= [rbp] | [rbp + 4]

rcx = [rbp] 4 [rbp + 4]

rsp—4
flags

[rsp] = flags
rsp + 4

22

Symbolic Execution

__handle_vnor:
mov rcx, [rbp]
mov rbx, [rbp + 4]
not rcx
not rbx
and rcx, rbx
mov [rbp + 4], rcx

pushf
pop [rbp]
e jmp __vm_dispatcher

Handler performing nor
(with flag side-effects)

rex
rbx
rex
rbx

rcx

[rbp + 4]

rsp
[rsp]

[rbp]
rsp

S Y N

4

T T

[rbp]

[rbp + 4]

—rex = = [rbp]

—rbx = = [rbp + 4]

rex A rbx
= (= 1[rbp]) A (=[rbp + 4])
= [rbp] | [rbp + 4]

rcx = [rbp] 4 [rbp + 4]

rsp—4
flags

[rsp] = flags
rsp + 4

22

Symbolic Execution on the Binary Level

- disassemble a given code location

- lift the disassembled code into an intermediate representation

- free of side effects (explicit formulas for implicit flag and stack pointer updates)

- common language for various architectures (x86, arm, mips, ...)
- pre-configure the symbolic state with concrete values (for concolic execution)

- symbolically execute the code starting at a given address

Today: Based on the Miasm reverse engineering framework?

’https://github.com/cea-sec/miasm

23

https://github.com/cea-sec/miasm

Task #5: SE-based Handler Analysis |

Use symbolic_execution.py and analyze the handler at Ox11el.

- Can you spot the virtual instruction pointer update?
- Try to locate the handler’s core semantics.

- What else do you see?

Reminder: The handler loads a constant (bytecode) and pushes it onto the stack.

24

Task #6: SE-based Handler Analysis Il

Use symbolic_execution.py and analyze the handler at Ox11a9.

- Can you spot the virtual instruction pointer update?
- Try to locate the handler’s core semantics.

- Try to understand how the parameters are derived.

Reminder: The handler performs a stack-based addition.

25

Lessons Learned

- RDX = RDX + 0Ox1
- increment the virtual instruction pointer by 1
- RDX = RDX + 0x5
- increment the virtual instruction pointer by 5
- @32[RCX + 0x8] = @32[RDX + 0x1]
- load a constant from the bytecode and store it onto the stack

- @32[RCX + OXFFFFFFFFFFFFFFF8] = @32[RCX] + @32[RCX +
OXFFFFFFFFFFFFFFF8]

- pop to values from the stack, add them and push the result onto the stack

26

Writing an SE-based Disassembler

Overview

- up until now: manual analysis to get a basic VM understanding
- VM components and structures
- basic VM layout
- handlers and (some) of their semantics

- next step: automated VM analysis

- goal: SE-based disassembler

- interactive approach between manual analysis and automation

28

VM Deobfuscation Automation Primer

1. build a symbolic execution engine that automatically follows the execution flow
2. start SE at the VM entry
3. each time SE stops, check why and hardcode register/memory values (bytecode, ...)

4. if SE reaches VM exit, extend VM executor

- add knowledge about handlers
- dump values

- reconstruct control-flow graph

29

Task #7: Following the Execution Flow

Modify follow_execution_flow.py until the symbolic execution leaves the VM.

- Execute the script and check where it stops.
- Add more and more knowledge about the VM and re-run the script.

- Use multiple concrete inputs for the VM and derive their corresponding outputs.

30

Task #8: Building a VM Disassembler

Modify vm_disassembler.py and enrich the disassembler output as much as possible.

- Start with the handlers you already know.
- Reverse engineer additional handlers and improve the disassembler output.

- If possible, dump intermediate values and add them to the output.

Hint: The handlers executed before conditional jumps are comparisons.

31

Task #9: Reconstruction of VM Disassembly

Run vm_disassembler_final.py. Try to reconstruct the underlying algorithm.

- Have a look at the disassembly. Can you identify patterns?
- Try to simplify the disassembly. Can you omit certain instructions?
- Can you rewrite multiple instructions in shorter sequences?

- Try to map the VM disassembly to the original code.

Hint: The underlying algorithm implements an iterative Fibonacci calculation.

32

Lessons Learned

- goto can be omitted
- PUSH 0x0 ; PUSHPTR var_Ox4 ; POPTOVAR
s var_0x4 := 0

- PUSHPTR var_0x8 ; PUSHFROMVAR ; PUSHPTR var_Ox4 ; PUSHFROMVAR
ADD ; PUSHPTR ; POPTOVAR

?

- var_0xc := var_0x8 + var_0x4

33

Conclusion

- VM analysis can be time-consuming
- mixture of manual analysis and automation
- automation can be cumbersome to implement (API calls, external data, ...)

- way more advanced VMs exist, but approach stays the same

35

Conclusion

Today:

- manual analysis of a VM
- writing an SE-based disassembler
- reconstruction of VM disassembly

- slides, code and samples:
https://github.com/mrphrazer/r2con2021_deobfuscation

Reach out for questions or discussions:

¥ @mr_phrazer
A https://synthesis.to

Thank you very much for your active participation!

36

https://github.com/mrphrazer/r2con2021_deobfuscation
https://twitter.com/mr_phrazer
https://synthesis.to

