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Abstract

Since software is an integral part of our daily life, it is of great importance to ensure its
safety and security. Still, we frequently observe attackers exploiting security vulnerabili-
ties to steal secret customer information, manipulate essential data and take control
over critical infrastructure. On the other hand, security researchers make efforts to find
and eliminate security flaws, which is often a non-trivial task. Even more, it is proven
to be undecidable.

As a consequence, security analysis is often goal-oriented, effectively limiting the analysis
scope by focusing only on certain types of bugs or proving the presence of specific
program characteristics. Therefore, analysis techniques are based on assumptions that
may only hold in artificial scenarios. In practice, such methods are either too broad
and suffer from false positives or too narrow and miss many cases. Still, they often are
very effective for their designed use case and alleviate tedious and time-consuming work
of a human analyst.

Some techniques are based on abstraction in which we transform parts of a program
into an abstract domain that is explicitly constructed to facilitate reasoning about
specific characteristics. In this domain, a so-called behavioral substitute represents only
the desired characteristics of a given program. Often, the transformation process relies
on labor-intensive manually implemented rules, resulting in behavioral substitutes that
are too generic or incomplete in some cases.

In this thesis, we propose problem-specific analysis techniques based on synthesized
behavioral substitutes to advance research on topics related to code deobfuscation,
fuzzing and root cause analysis. In each case, we design a domain-specific representation
that allows generic reasoning in its associated area. We apply stochastic program
synthesis techniques to automatically learn behavioral substitutes. For this, we use
the target program as a black-box, basically using the program’s behavior as feedback.
This combination of crafting target-specific representations in a problem-specific domain
allows us to reason about more generic instances of the problem while staying close to
the target.

As a consequence, our methods are generic regarding the problem and geared to the
target, allowing us to operate on a wide range of problem instances without implementing
a target-specific analysis. In our empirical evaluation, we show for various real-world
targets that we either outperform state-of-the-art approaches or that our techniques are
orthogonal to existing approaches and perform in scenarios where others do not.
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Zusammenfassung

Software spielt eine wichtige Rolle in unserem Leben. Daher ist es essenziell, sicher-
zustellen, dass sie fehlerfrei und sicher gegen Angriffe ist. Wir beobachten jedoch
regelmäßig, dass Angreifer Sicherheitslücken ausnutzen, um geheime Informationen zu
stehlen, Daten zu manipulieren und um die Kontrolle über kritische Infrastruktur zu
erlangen. Andererseits arbeiten Sicherheitsforscher permanent daran, Schwachstellen
in Software zu finden und zu beheben. Dies ist jedoch keine triviale Aufgabe, sondern
bewiesenermaßen unentscheidbar.

Daher sind Sicherheitsanalysen oft auf wenige spezifische Fragestellungen begrenzt;
beispielsweise werden nur bestimmte Fehlerklassen oder das Vorhandensein bestimmter
Programmeigenschaften betrachtet. Als Konsequenz davon treffen solche Analysetech-
niken Annahmen, die oft nur in künstlichen Szenarien zutreffen. In der Praxis sind
diese Methoden entweder zu oberflächlich und produzieren False Positives oder sie
sind zu eingeschränkt, sodass sie viele Szenarien nicht finden. Nichtsdestotrotz sind
solche Analysen sehr effektiv in ihren jeweiligen Anwendungsfällen und erleichtern die
mühselige und zeitaufwändige Arbeit menschlicher Analysten.

Manche dieser Techniken basieren auf Abstraktion: Ein Programm wird in einer abstrak-
ten Domäne abgebildet, die Aussagen über spezielle Programmeigenschaften erleichtert.
Die zu untersuchenden Eigenschaften des ursprünglichen Programms werden hierbei
durch einen verhaltensbasierten Repräsentanten dargestellt. Die Regeln für diesen
Transformationsprozess müssen meist mühselig von Hand implementiert werden, wes-
halb die so erstellten verhaltensbasierten Repräsentanten entweder zu generisch oder
unvollständig für viele Analysen sind.

In dieser Arbeit stellen wir problemspezifische Analysetechniken für Code Deobfus-
cation, Fuzzing und Root-Cause-Analyse vor, die verhaltensbasierte Repräsentanten
automatisch synthetisieren, anstatt sie nach einem manuell erstellten Regelwerk zu über-
setzen. Dazu konstruieren wir stets zuerst eine domänenspezifische Repräsentation, in
welcher Schlussfolgerungen über generische Probleminstanzen getroffen werden können.
Anschließend verwenden wir Methoden der stochastischen Programmsynthese, um einen
verhaltensbasierten Repräsentanten eines Zielprogramms zu lernen. Dabei dient das
Zielprogramm als Orakel, dessen Verhalten als Rückinformation für die Synthese dient.
Diese Modellierung einer problemspezifischen Domäne zusammen mit dem Lernen pro-
grammspezifischer Repräsentationen ermöglicht es, über generische Probleminstanzen
zu urteilen und dabei trotzdem nah am Zielprogramm zu bleiben.
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vi Zusammenfassung

Diese Symbiose erlaubt uns, über zahlreiche Probleme Schlussfolgerungen anzustellen,
ohne programmspezifische Analysen implementieren zu müssen. In unserer empirischen
Evaluation zeigen wir dies anhand einiger Programme aus diversen Anwendungsbe-
reichen. Wir demonstrieren, dass unsere Methode andere moderne Ansätze entweder
übertrifft oder orthogonal zu diesen ist – somit eignet sie sich auch für Fälle, in denen
die bisherigen Ansätze nicht funktioniert haben.
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Chapter 1

Introduction

Software is an integral part of our life. It is used to guide (autonomous) vehicles, power
medical devices, process financial transactions, protect private information and control
critical infrastructure. In short, it has a multitude of application scenarios that are
crucial to our everyday life. Hence, guaranteeing the safety and security of software is of
utmost importance. Nevertheless, not a day passes without security-critical bugs being
uncovered in all kinds of software. Some of the more recent examples are Spectre [136]
and Meltdown [147] that are based on speculative execution and enable attackers to leak
sensitive data from memory. Other prominent examples are Heartbleed [70], a bug in
the cryptographic library OpenSSL that allowed attackers to remotely leak confidential
information such as secret keys, and Shellshock [71] that enabled attackers to execute
arbitrary commands remotely on the user’s machine.

Bugs like these are regularly uncovered, although numerous security researchers give
their best to identify and eliminate software vulnerabilities before malicious actors can
exploit them. This brings up the question why the problem is not solved yet, considering
the vast amount of resources spent on fixing it. Amongst others, this is due to the
fact that findings bugs is not only a non-trivial task but proven to be undecidable in
general [182]. While finding bugs is one important component of software security,
the area is vastly more complex: software security covers topics ranging from code
understanding to bug triaging, patching and exploitation, each of them dealing with
problems that are in its core undecidable. Some elementary but undecidable questions
are:

• Can a given program location be reached?

• Is there any way to trigger this specific bug?

• Is there a data flow between two instructions?

• Can a specific bug be misused by an attacker?

• Why does this particular input crash the program?

In general, it is impossible to answer these questions. However, in practice, various
methods allow answering such questions at least partially. While it is mostly impossible
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to prove that a characteristic cannot hold, it often can be proved that a certain aspect
holds by providing a proof of concept (PoC). This PoC can be an input that triggers
a certain bug, reaches a given program state or crashes a program. It also can be a
working exploit that allows an attacker to execute arbitrary code by misusing a software
vulnerability. Crafting such a PoC can be a tedious task that requires a lot of manual
work.

To reduce the effort for a human analyst, many techniques based on static analy-
sis and dynamic analysis were introduced to partially automate these tasks. While
techniques based on static analysis such as abstract interpretation [72, 132, 164], ma-
chine learning [226–228] and symbolic execution [48, 195] reason about the program
without executing it, dynamic techniques such as taint tracking [191, 195, 223] and
fuzzing [34, 179, 194, 230, 231] operate on concrete program runs. Other (static and
dynamic) techniques are based on abstraction; they transform parts of the program into
an intermediate representation or behavioral substitute that simplifies reasoning about
certain program characteristics [50, 77, 129, 131].

In most cases, all these techniques are neither sound nor complete [200]. They are
not complete since they only explore a limited space of program behavior. They are
not sound, since they may generate false positives due to simplified assumptions that
deviate from the real program context. Therefore, they still require a human in the
loop to analyze the results. Nonetheless, this reduces the work of a human analyst in
many real-world scenarios.

1.1 Topic of this Work
In this thesis, we present methods we developed to improve and facilitate reasoning
about different aspects of software security. In detail, we improve techniques related to
code deobfuscation, fuzzing and root cause analysis. To this end, we design problem-
specific analysis techniques that are generic in their associated field and synthesize
target-specific program representations that allow us to reason about generic instances
while being geared to the target. In the following, we discuss the topic of this work
in more detail. Furthermore, we highlight the limitations of other state-of-the-art
approaches that tackle similar goals.

1.1.1 Behavioral Substitutes

When reasoning about software behavior, we are often interested in a specific scenario or
goal. For instance, we might want to know whether two snippets of code are semantically
equivalent, whether we can reach a defined program state or which input swaps a certain
branch. While generic reasoning is undecidable, we often find answers to such questions
by the means of abstraction: we use techniques such as abstract interpretation or work
on intermediate representations.

In abstraction interpretation [164], we define and evaluate the instruction semantics
of concrete operations in an abstract domain. While this kind of analysis decreases
precision, it allows us to analyze specific characteristics efficiently. Examples for this
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are detecting and removing dead branches [72] or resolving targets of indirect jumps in
a control-flow graph [132].

When reasoning about assembly code in an automated manner, we require precise
descriptions of the instruction semantics. However, assembly code mostly modifies
flag registers and stack registers implicitly. Therefore, many approaches lift assembly
code into an intermediate representation that models these side-effects in an explicit
manner [50, 77, 129, 131]. On top of this intermediate representation, we can build
more powerful analysis techniques. For instance, we can symbolically execute a path
in the program and pass its constraints to an SMT solver—a program that efficiently
solves bit-vector arithmetic problems. Thereby, we craft an input that triggers the
symbolically executed path in a concrete program run. In another example, we can
perform a taint analysis to track the program parts that depend on user-provided
input [195].

In the context of this work, we call such intermediate representations behavioral substi-
tutes. A behavioral substitute is a program in a domain-specific language that allows
us to reason about specific program characteristics efficiently. To put it differently, the
domain-specific languages are explicitly designed to simplify reasoning about desired
program characteristics or behavior.

In contrast to other works, we do not explicitly specify the transformations that
translate concrete program behavior into an abstract domain. Instead, we first design
domain-specific languages and then apply techniques based on program synthesis to
automatically learn behavioral substitutes while using the target program’s behavior as
a black-box. Afterward, we use these behavioral substitutes to solve problems related
to code deobfuscation, fuzzing and root cause analysis. In the following, we give a brief
introduction to these topics.

1.1.2 Code Deobfuscation

Code obfuscation aims to impede the understanding of what a piece of code does; it
makes it harder to understand its semantics. Usually, we apply code transformations
that preserve the core semantics but hide the actual calculations or control flow of the
underlying code. Code obfuscation is mostly used to protect intellectual property in
proprietary software or to evade malware analysis. In the following, we briefly discuss
state-of-the-art code obfuscation and deobfuscation techniques.

Two common obfuscation techniques that aim to thwart static code analysis techniques
are opaque predicates and control-flow flattening[63]. While opaque predicates insert
fake branches in the control-flow graph based on random values, domain knowledge or
simple arithmetic identities, control-flow flattening removes the structure of control-flow
graphs by introducing a state-machine whose states always return to a central dispatcher.
Although these techniques can be defeated statically [72, 159], they offer little protection
against a dynamic analysis setting.

Virtual-machine (VM)-based obfuscation defines a custom CPU in software which
interprets the unobfuscated code as bytecode. To reconstruct the underlying high-level
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code, a human analyst has to identify the different VM components, reverse engineer
the semantics of all VM handlers and, finally, reconstruct the control-flow graph of the
protected code. This process often is very time-consuming and tedious [183].

Arithmetic encodings or Mixed Boolean-Arithmetic (MBA) [236] replace simple arith-
metic expressions with syntactically complex ones. As a consequence, they hide seman-
tically simple calculations in syntactically complex encodings. Although there exist
some approaches to simplify specific arithmetic encodings [80, 81, 101], it generally
remains an NP-hard problem [144].

State-of-the-art code deobfuscation techniques combine taint analysis, symbolic execu-
tion and compiler optimizations [66, 225]. While compiler optimizations often remove
junk code and computations of constant data via constant propagation, taint analysis is
used to remove non-input dependent instructions. Furthermore, symbolic execution sim-
plifies and summarizes common code operations. Although taint analysis and symbolic
execution are quiete powerful, their performance scales with the syntactical complexity
of the underlying code. As a consequence, they fail on large amounts of code and cannot
deobfuscate syntactically complex expressions such as arithmetic encodings, even if the
underlying semantics are simple.

In this work, we introduce a code deobfuscation technique that is based on program syn-
thesis. Instead of analyzing the obfuscated code itself, we learn semantically equivalent
expressions based on its input-output (I/O) behavior. We use this as a building block
to simplify obfuscation techniques based on arithmetic encodings and automatically
infer the semantics of VM instruction handlers.

1.1.3 Fuzzing

Fuzzing is a software testing technique that pseudo-randomly provides inputs to a
program with the intention of causing software faults. These inputs can be generated
randomly based on a defined set of rules or derived from some input. While a black-box
fuzzer produces a constant stream of inputs without any internal knowledge of the
target application, a gray-box fuzzer monitors the target application and uses the
coverage produced by different inputs as guidance for generating new inputs. One of
the best-known gray-box fuzzers is AFL [231], which started a new fuzzing wave of
academic research. While it performs well on many targets, specific situations remain
challenging to overcome. As a consequence, various fuzzers were built that aim to solve
such challenges. For instance, Redqueen [34] introduces the concept of input-to-state
correspondence to solve input constraints such as magic bytes and nested checksums,
QSym [230] and T-Fuzz [171] overcome hard constraints via symbolic execution.

Another aspect that affects the performance of fuzzers is the expected input structure
of a target program. To fuzz targets such as language interpreters and parsers, struc-
tured fuzzers rely on provided input specifications that describe the expected input
structure [33, 173]. Since these input specifications often have to be crafted manually,
setting up a particular target is not only time-consuming but also drastically reduces
the number of prospective targets overall.
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In the context of this thesis, we introduce an approach that automatically infers
structural patterns of input languages, basically learning an input description during
fuzzing. In combination with structure-aware input mutations, we can produce target-
specific structured inputs without relying on any provided input specification.

1.1.4 Root Cause Analysis

Once a fuzzer found a crashing input, our goal is, in the long term, to fix the underlying
bug. Before we can find out how to fix the bug, we have to understand why the crash
occurs. Often, a program crashes due to illegal memory reads or writes, stack and
heap-based buffer overflows or use-after-free bugs. While we can use a debugger to
inspect the program at its crashing location and see why the crash occurs, we have
to triage the bug to find the root cause—the real cause of a crash that might be far
earlier in the program’s execution flow. This is often a non-trivial task since the root
cause might be a logic error in a complex state machine, an uninitialized variable or
an integer overflow (e. g., in the context of memory allocation), often located many
thousands or millions of lines before the crashing location in the execution trace.

A human analyst can simplify the process by using tools such as valgrind [163] or
sanitizers (e. g., ASAN [197] and MSAN [204]) that facilitate the detection of illegal
memory access closer to the root cause. Furthermore, automated techniques [68, 69, 221]
based on data flow analysis such as reverse execution and backward taint analysis start
at the crashing location and isolate instructions that contribute to the bug. However,
for sophisticated bugs like type confusions where there is no data flow edge between
the root cause and the crashing location, root cause analysis remains a challenging
task.

As part of this thesis, we introduce a generic approach for root cause analysis in which
we statistically synthesize predicates that locate behavioral differences in crashing and
non-crashing inputs. Based on these predicates, we can precisely pinpoint the root
cause for different complex bug classes.

1.2 Contributions

In this thesis, we explore how to synthesize behavioral substitutes that allow us to
solve problems related to different aspects of software security efficiently. We begin by
providing a systematic overview of synthesizing behavioral substitutes. Afterward, we
present three scenarios in which synthesized behavioral substitutes allow us to improve
code deobfuscation, fuzzing and root cause analysis techniques. In summary, we make
the following contributions.

Chapter 2: Synthesis of Behavioral Substitutes. In the foundational chapter of
this thesis, we provide a systematic overview of different aspects of program synthesis
with the goal to synthesize behavioral substitutes. We start by giving an introduction
to program synthesis, followed by a brief introduction to SMT solvers and synthesis
based on logical reasoning. Afterward, we illustrate program synthesis in a stochastic

5



setting. We conclude by discussing how the techniques described in following chapters
of this thesis are modeled as synthesis problems.

Chapter 3: Expression Synthesis to Simplify Obfuscated Code. The third
chapter presents the state of the art in VM-based obfuscation and deobfuscation tech-
niques. Afterward, we introduce a novel method for code deobfuscation based on
program synthesis. Instead of using techniques that operate on the assembly code itself,
we only use the code as an oracle to generate input-output pairs. Then, we synthe-
size arithmetic expressions with the same input-output behavior using Monte Carlo
Tree Search. Using this semantics-based approach, we simplify syntactically complex
expressions as provided by obfuscation transformations based on arithmetic encodings.
Furthermore, we use it to break modern VM-based obfuscators by automatically learning
the instruction semantics of their arithmetic handlers.

Chapter 4: Input Structure Synthesis to Guide Feedback-driven Fuzzing.
After analyzing the shortcomings of current fuzzers for structured languages, we design
and implement an approach that automatically infers structural patterns of the target
language. To learn these patterns, we use code coverage as feedback and delete such
parts from inputs that are irrelevant to the observed coverage. Afterward, we make
use of these learned structural patterns to implement structure-aware mutations that
produce new structured inputs of the target language without prior knowledge of the
underlying specification. Implementing this approach on top of a generic feedback-
driven fuzzer allows us to outperform many fuzzers that make significantly stronger
assumptions such as access to input specifications, seeds and source code. Although
structured fuzzers with manually provided input specifications outperform our approach,
we can still increase the test coverage by using their inputs as seed.

Chapter 5: Predicate Synthesis to Automate Root Cause Explanation. This
chapter starts with an analysis of the shortcomings of current approaches for root cause
analysis. Afterward, we present a bug-agnostic approach that statistically pinpoints
the root cause for various types of bugs. Starting with a crashing input, we derive
neighboring crashing and non-crashing inputs and collect trace information for all
derived inputs. The core of this chapter is our statistical analysis that isolates crashing
behavior based on Boolean predicates. Using the collected trace information that
represent crashing and non-crashing behavior, we synthesize predicates that distinguish
crashes from non-crashes, basically predicting whether a provided input is likely to
crash the program. Following the idea that the root cause is related to the earliest
predicates that predict a program crash, we rank these predicates according to their
accuracy and average execution order. Our evaluation shows that this allows a human
analyst to precisely pinpoint the root cause for many complex bugs, including type
confusions, use-after-frees, heap buffer overflows and uninitialized variables.

1.3 List of Publications

This work is mainly based on three papers that were all published at the Usenix Security
Symposium. In the following, we provide a high-level overview of these papers and list
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the role of collaborators. Afterward, we mention the author’s papers that are not part
of this thesis.

Syntia. Chapter 3 is based on Syntia [43], a program synthesizer for code deob-
fuscation. It learns arithmetic expressions using Monte Carlo Tree Search based on
input-output samples obtained from the obfuscated code. The paper was published
at Usenix Security Symposium 2017 in cooperation with Moritz Contag, Cornelius
Aschermann and Thorsten Holz. While I produced the idea and implementation, evalu-
ation and writing was conducted mainly in cooperation with Moritz Contag. Cornelius
Aschermann helped in the algorithmic design and the writing process.

Grimoire. Grimoire [44] is a feedback-driven fuzzer based on Redqueen that
automatically learns language constructs of highly structured input formats during
fuzzing based on the coverage produced by different inputs. It uses these constructs to
create structure-aware mutations that improve state space exploration for targets such
as language interpreters and parsers. Chapter 4 is based on this paper; it was published
at USENIX Security Symposium 2020 by Tim Blazytko, Cornelius Aschermann, Moritz
Schlögel, Ali Abbasi, Sergej Schumilo, Simon Wörner and Thorsten Holz. The main
ideas of Grimoire, as well as large parts of the implementation, were developed by
myself. Cornelius Aschermann introduced the original idea and helped to stabilize
Redqueen in collaboration with Sergej Schumilo. The evaluation was done by Moritz
Schlögel and myself.

Aurora. Chapter 5 is based on a paper called Aurora [45] in which we use statistical
crash analysis to isolate and explain the root cause for many different bug classes.
Based on collected trace information for crashing and non-crashing inputs, it synthesizes
Boolean predicates that pinpoint the root cause by describing behavioral differences in
crashes and non-crashes. The paper was published at USENIX Security Symposium
2020 by Tim Blazytko, Moritz Schlögel, Cornelius Aschermann, Ali Abbasi, Joel Frank,
Simon Wörner and Thorsten Holz. Design, writing, implementation and evaluation
were realized in collaboration with Moritz Schlögel. I developed and implemented
major parts of the statistical analysis and predicate synthesis algorithms. Cornelius
Aschermann helped in formalizing the statistical model.

While this thesis is built upon the three aforementioned papers, I contributed to three
further publications. While I was mainly involved in the evaluation and writing in
REDQUEEN: Fuzzing with Input-to-State Correspondence [34] and Towards Automated
Discovery of Crash-Resistant Primitives in Binaries [138], I also contributed to writing in
Towards Automated Generation of Exploitation Primitives for Web Browsers [88].

7





Chapter 2

Synthesis of Behavioral Substitutes

In this chapter, we discuss how to learn target-specific behavioral substitutes in the
context of a defined goal. For this, we introduce the concept of program synthesis, the
task of automatically learning a program in a domain-specific language that satisfies
a given high-level specification. We first describe different components of program
synthesis. Afterward, we describe the concept of program synthesis in the context
of logical reasoning: SMT-based program synthesis. Finally, we discuss the setting
of program synthesis in a probabilistic world and describe its applications and inner
workings for stochastic program synthesis.

2.1 Program Synthesis

Program synthesis is the task of automatically generating programs for a given specifi-
cation. We call a program that takes a specification as input and outputs a program a
synthesizer. The synthesizer’s input and output formats are flexible and typically target
a problem-specific application domain. Gulwani [102] divides program synthesis into
three different dimensions: user intent, search space and search technique.

User Intent. The specification or user intent describes the semantics of the desired
program behavior resulting from a successful synthesis task and will be provided as
input to the synthesizer. User intent can be provided in various ways, including (1) a
logical specification that describes the logical relationship between inputs and outputs
of a program [104, 152, 203], (2) a finite number of input-output examples [91, 123],
(3) a program execution trace representing a list of instructions describing intermediate
states for a specific input [141], (4) access to a program that is queried as an oracle by
the synthesizer [91, 123]. The choice of the specification is domain-specific.

Search Space. The space of all possible programs that can be constructed by a specific
synthesizer is called search space. The representation of a program is domain-specific.
Possible representations include bit-vector programs [104, 123], regular expressions [166],
finite automata [31, 41] and context-free grammars [28]. Depending on the domain, the
search space can be finite or infinite.
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Search Technique. The search technique describes how a synthesizer explores the
search space to construct a program. Possible search methods include (1) enumerative
search that explores the search space in some order [60, 99, 154], (2) logical reasoning
based on constraint solving [91, 104, 123] and (3) statistical and stochastic techniques
based on probabilistic inference [103], genetic algorithms [127, 216] or Markov Chain
Monte Carlo [193].

To sum up, a synthesizer takes as input a specification describing the semantics of
the desired program behavior to be constructed. The search technique describes the
synthesizer’s algorithm to explore the search space—the set of all possible programs—
and find a suitable match for the provided specification. In the following, we outline
these concepts by illustrating concrete instances of search spaces and search methods.
First, we discuss program synthesis in the context of logical reasoning. Afterward, we lay
the groundwork for stochastic program synthesis, building the base of this thesis.

2.2 SMT-based Synthesis

In this section, we introduce synthesis techniques that are based on logical reasoning.
We first describe the preliminaries related to logic and satisfiability so that we obtain a
better understanding of SMT solvers. Afterward, we discuss several synthesis approaches
that use SMT solvers as a core component for different synthesis tasks.

2.2.1 Preliminaries

In the next paragraphs, we introduce the required preliminaries to understand SMT
solvers. While the contents are mainly based on Decision Procedures: An Algorithmic
Point of View [140], the structure is partly inspired by Blazytko [42].

Propositional logic consists of a set of variables, logical symbols such as connectives (∧,
∨ and ¬) and a syntax—rules that define how to construct well-formed sentences [140].
A well-formed sentence is called formula. It is either a variable or a combination of
parentheses, variables and the symbols ∧, ∨ and ¬.

Definition 2.1 (syntax of propositional logic, formula). The grammar ({S},Σ =
V ∪ O,P, S) with the of variables V = {v0, v1, . . . , vn}, the set of logical symbols
O = {∧,∨,¬} and the production rules

P = {S → v0 | v1 | . . . | vn | S S ∧ | S S ∨ | S ¬}

defines the syntax of propositional logic. A formula ϕ is a well-formed sentence with
respect to the syntax.

While a formula is a syntactical construct, we can add meaning to it by assigning truth
values to its variables. This way, we define the formula’s semantics. We say a formula is
satisfiable if it evaluates to true. The interpretation or model is a concrete assignment
that satisfies the formula. If the formula cannot be satisfied, it is unsatisfiable.
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Definition 2.2 (satisfiability, interpretation, model). Let ϕ be a formula of propo-
sitional logic. If there exists an assignment such that ϕ becomes true, ϕ is satisfiable,
otherwise unsatisfiable. If ϕ is satisfiable, there exists a concrete variable assignment
that is called interpretation or model.

It is possible to formulate satisfiability as a decision problem. For a given formula ϕ,
the SAT problem asks if there exists a model for ϕ. A SAT solver can be used to decide
the SAT problem.

Definition 2.3 (SAT problem, SAT solver). The SAT problem is a decision problem
that asks if a formula of propositional logic ϕ is satisfiable. A SAT solver is a program
that decides the SAT problem. If the SAT problem is satisfiable, the solver returns SAT
and a model, otherwise UNSAT.

While deciding the SAT problem is NP-complete, SAT solvers are known to perform
very efficiently on many real-world problems [140]. However, due to their restriction
to propositional logic, their usefulness for program synthesis is limited. To address
this limitation, synthesizer based on logical reasoning often formulate their decision
problems in satisfiability modulo theories [91, 102, 104, 123, 184, 185].

Satisfiability modulo theories (SMT) expand the former concepts by including additional
theories. An SMT formula combines propositional logic and theories such as the theories
of bit vectors and arrays [51], reals [87], strings and regular expressions [143] and binary
floating-points [188]. To extend satisfiability to SMT, we ask in the SMT problem if
there exists a model that solves a given formula ϕ. An SMT solver is a program that
decides the SMT problem by combining a SAT solver with a solver for the underlying
theory.

Definition 2.4 (SMT problem, SMT solver). The SMT problem is a decision
problem that asks if a formula of propositional logic ϕ and of a theory T is satisfiable.
An SMT solver is a program that decides the SMT problem. If the SMT problem is
satisfiable, the solver returns SAT and a model, otherwise UNSAT.

Satisfiability modulo theories are at least NP-complete and, in the worst-case scenario,
undecidable. However, often NP-complete fragments of theories are sufficient to solve
many real-world problems effectively [74].

For program synthesis, the theory of fixed-size bit vectors is frequently used. This
theory represents variables and constants as vectors of bits; it also defines arithmetic
as well as bitwise operations over bit vectors (e. g., addition, subtraction, shifts and
logical operations). As a consequence, it provides the basis for synthesizing all kinds of
bit-vector programs.

2.2.2 Search Space and Methods

In this section, we discuss several techniques of SMT-based program synthesis. Therefor,
we consider the following simplified syntax of bit-vector arithmetic which we will use to
illustrate different program synthesis concepts:
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Definition 2.5 (syntax of simplified bit-vector arithmetic, formula). For a
fixed-size bit vector of size l, the grammar ({S},Σ = V ∪ O,P, S) with the variables
V = {x, y}, the set of arithmetic symbols O = {+,−} and the production rules

P = {S → x | y | S S + | S S −}

defines the syntax of simplified bit-vector arithmetic. A formula ϕ is a well-formed
sentence with respect to the syntax.

Given this simplified bit-vector arithmetic, the search space consists of all bit-vector
formulas that can be derived from the grammar. Therefore, x, y y + and x y − are
formulas, while y ¬ is not, since ¬ is not a valid symbol in the grammar. In the
following, we illustrate different search techniques to explore the search base.

Enumerative Synthesis. The enumerative synthesis approach takes as input a logical
specification that describes the desired program behavior. Then, it explores the search
space via exhaustive enumeration, in which the synthesizer—beginning with the starting
symbol—incrementally applies different derivation rules in some order. Often, domain-
specific heuristics are used to prune the search space (e. g., enforcing an order for
commutative operators). For every terminal formula, it queries an SMT solver to check
if the derived formula is semantically equivalent to the provided logical specification.
While this approach works well for small formulas, it grows exponentially, making this
search method prohibitively expensive [36, 102].

Component-based Synthesis. In component-based synthesis [104, 123] a corpus
of base components—core expressions of the synthesis language such as x y + and
x y −—build a so-called library. Given a logical specification as user intent and a logical
model of control flow, an SMT solver tries to find a permutation of library components
that fulfill the provided specification. As a consequence, the synthesizer can efficiently
prune the search space due to the underlying SMT solver. However, such a synthesizer
can only find programs if enough core components are included in the library. For
instance, it can only find x x + x x + + if it includes x x + at least twice in the
library.

Oracle-guided Synthesis. Instead of providing a full logical program specification
as input, a partial program is provided in the form of its input-output (I/O) behavior.
Therefor, a program is used as an oracle by querying it with a vector of randomly
generated inputs and observing its outputs. While this approach also works when a
logical specification is provided (which can be used as an oracle), it especially enables the
usage of synthesis-based approaches if no concrete specification is given or too complex
to be modeled. The disadvantage of this method is that the synthesized program is
only as precise as the observed input-output behavior; thus, only observable behavior
can be synthesized[91, 123].

Counter-example Guided Synthesis. To tackle the limitations of oracle-guided
synthesis, counter-example guided synthesis has been introduced. If the synthesizer finds
different programs leading to the same input-output behavior, it uses an SMT solver to
check whether these two programs are semantically equivalent. If not, the SMT solver
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returns a distinguishing input, which is provided to the I/O oracle. After obtaining
the output, the new I/O sample is added to the partial program specification and the
synthesis process restarts until the synthesizer cannot find any more distinguishing
inputs [91, 104, 123].

Template-based Synthesis. In scenarios where domain knowledge is applicable, the
search space can be reduced dramatically via template-based synthesis. In these cases,
as part of user intent, a template is provided to the synthesizer as a starting point. For
instance, if the synthesizer has to synthesize x x + x x + + and we know that three
additions are part of the semantics, we can provide a template such as S S + S + +,
where the SMT solver only has to locate the variable assignment instead of exploring
the whole search space [91].

To summarize, there are different search strategies on how (1) user intent can be
provided, (2) the search space is structured and (3) synthesizers operate. In SMT-based
approaches, the user intent is usually defined either as a complete logical specification
or as a partial program in form of input-output samples. The search space generated by
our example grammar is, theoretically, infinite; however, SMT-based approaches mostly
operate on a large but finite search space. While the search space consists of all possible
permutations of its core components, it is drastically reduced with template-based
synthesis if domain knowledge can be applied. Each of these techniques can be applied
on their own, but often a combination of different aspects is possible. For instance,
Godefroid [91] applies a counter-example and oracle-guided approach whereby the
search space is reduced via provided templates. Gulwani et al. use a component-based
and counter-example guided approach [104]. As we will see in the next section, parts of
these techniques can also be adapted for stochastic approaches, with and without SMT
solvers.

2.3 Stochastic Synthesis

While SMT-based program synthesis uses logical reasoning to construct semantically
correct programs, stochastic synthesis approximates program equivalence as part of a
stochastic optimization problem, where a cost function guides the search. This also
allows us to find partial programs, while SMT solvers either find a concrete solution or
no solution at all. Still, the (partial) result of a stochastic synthesizer can be used in
combination with an SMT solver to verify its correctness. In this section, we describe
the main ideas of stochastic optimization applied to program synthesis, followed by a
discussion of suitable algorithms.

2.3.1 Stochastic Optimization

The goal of stochastic optimization is to locate the global optimum of a discrete search
space. While it is applicable to minimization as well as maximization problems, we
focus on minimization. The following definitions are based on work by Hoos et al. [117]
and Crama et al. [67].
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For a combinatorial problem, the space of all possible combinations is called search
space or state space. From this state space, an objective function or cost function maps
states from the state space to real numbers.

Definition 2.6 (search space, state, objective function). The search space or
state space S is the space of all possible combinations for a given combinatorial problem.
An element s ∈ S is referred to as a state. An objective function f : S → R maps
elements from S to real numbers.

Based on the objective function, we can introduce the concept of global optima. A
global optimum is a state for which the cost function becomes minimal. To solve the
stochastic optimization problem, we try to minimize the cost function by finding a global
optimum.

Definition 2.7 (global optimum, stochastic optimization problem). Given a
tuple (S, f), we call an element s ∈ S a global optimum if f(s) ≤ f(s′) for all s′ ∈ S.
The stochastic optimization problem describes the search for a global optimum.

For stochastic optimization, we assume the search space to be structured so that it can
be explored to find the global optimum. For a given state from the search space, slight
mutations are assumed to generate „nearby“ states that are mapped to similar values
by the objective function. For this, we introduce the abstract concept of neighborhood
as follows:

Definition 2.8 (neighborhood). Given a tuple (S, f) and a state s ∈ S. We call a
slightly derived state s′ ∈ S neighbor of s. Furthermore, we call the set of all neighbors
N(s) ⊆ S neighborhood of s.

The naive process of locating the global optimum is to gradually explore the neigh-
borhood and follow decreasing values obtained by the objective function. However,
for many real-world problems, this approach often fails due to the inherent nature of
the search space’s structure. Instead, it walks towards optimums in the neighborhood.
Such an optimum is referred to as local optimum.

Definition 2.9 (local optimum). Given a tuple (S, f). We call a state s ∈ S local
optimum if f(s) ≤ f(s′) holds for all s′ ∈ N(s).

To formulate program synthesis as a stochastic optimization problem, we consider the
space of all possible programs as the search space. If two programs are syntactically
similar, they are neighbors. For every program in the search space, we can use an
objective function that evaluates domain-specific characteristics—based on the user
intent—and assigns a real number known as score or reward to it. The closer the
program relates to the user intent, the smaller is its reward. A global optimum is the
desired program described by the user intent. In this setting, a synthesizer aims to
minimize the objective function with respect to the user intent.

For example, consider all syntactically correct programs of simplified bit-vector arith-
metic as the search space. Note that it is infinite if we assume that the synthesizer
uses the grammar in Definition 2.5 to generate program candidates. Two syntactically
similar programs—such as x x + and x y +—are considered to be neighbors. Assume
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that the user intent is provided as a set of input-output pairs. Then, the objective
function might calculate a reward by comparing the program candidate’s I/O behavior
to the ones provided as specification; the synthesizer aims to find the program with the
closest input-output behavior related to the specification. This global optimum might
match the provided specification exactly; otherwise, the global optimum is the best
partial program that approximates the specification.

2.3.2 Search Methods

Up until now, we discussed how to model program synthesis as a stochastic optimization
problem. Given this scenario, we now introduce two different search methods for
stochastic optimization: local search and Monte Carlo Tree Search.

2.3.2.1 Local Search

Local search comprises a family of algorithms that use the neighborhood concept to
explore the search space. Starting with a random state, we inspect its neighborhood by
applying minor modifications to the state, evaluating it with the objective function and
preferably following decreasing values. The naive approach that was sketched in the
section before is known as hill climbing and is formally presented in Algorithm 1. It
only accepts states with a lower reward until some upper loop bound n is reached.

Algorithm 1: Basic local search algorithm. Also known as hill climbing.
Result: s is a synthesized program

1 s ← random_state()
2 for i← 0 to n do
3 s′ ← mutate(s)
4 if f(s′) < f(s) then
5 s ← s′

The main problem of hill climbing is that it quickly gets stuck in local optima without
any way to escape. As a consequence, many other algorithms extend hill climbing with
an acceptance function that probabilistically accepts states with higher scores. This
concept is illustrated in Algorithm 2, in which a worse state is accepted if a random
value between 0 and 1 (RANDOM()) is smaller than a value of the acceptance function
accept that is based on the rewards of the current and the previous state. Still, it
always remembers and returns smin, the best state that has been found.

As a consequence, the acceptance function allows the local search to explore different
locations if it is stuck in local optima. Figure 2.1 illustrates this process on the example
of finding the darkest area in a given map. Starting at an initial state (s0), the
algorithm always accepts a candidate with a better score than the current one (the
green arrows such as from s0 to s1 and from s3 to s4). If the score is worse, we accept
the worse candidate with a probability (the red arrow from s2 to s3) that depends on
the acceptance function and how much worse the candidate is. In case the candidate
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Algorithm 2: Generic local search with an acceptance function.
Result: smin is a synthesized program

1 s ← random_state()
2 smin ← s
3 for i← 0 to n do
4 s′ ← mutate(s)
5 if f(s′) < f(s) or RANDOM() < accept(f(s′), f(s)) then
6 s ← s′

7 if f(s) < f(smin) then
8 smin ← s

is discarded (e. g., the crossed-out red arrow at s4), we pick another one in the local
neighborhood. This allows the algorithm to escape from local optima. The algorithm
terminates after a specified number of n iterations.

Figure 2.1: Local search with an acceptance function approximates a global optimum
(the darkest area in the map).

In the following, we discuss two different acceptance functions: Metropolis criterion and
Simulated Annealing.

Metropolis Criterion. The Metropolis criterion [156] is a common acceptance crite-
rion. Given the current state s′ and the previous state s, it is calculated as

min

(
1, exp

(
−f(s)− f(s′)

T

))
(2.1)

where T is a control parameter referred to as temperature. Intuitively, the further f(s′)
and f(s) are apart from each other, the more unlikely the worse state is accepted. If
f(s′) = f(s), the current state is always accepted. The temperature is used to increase
and decrease the acceptance probability of worse states. The greater the value of T , the
more likely worse states are accepted. T may be a constant, but it also can increase or
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decrease over time. A scenario in which it decreases over time is known as Simulated
Annealing.

Simulated Annealing. Simulated Annealing is a variation of the Metropolis criterion
in which the search is guided by a falling temperature T that decreases the probability
of accepting worse candidates over time [128, 133]. In Algorithm 2, this can be realized
by depending the temperature on the upper bound n, for instance as follows:

T =
n− i
n

(2.2)

The lower the loop counter, the higher is the temperature and the more likely the
algorithm accepts a significantly worse candidate solution. This allows the algorithm
to escape from local optima while the temperature is high; for low temperatures (loop
counters closer to 0), it mainly accepts better candidate solutions.

2.3.2.2 Monte Carlo Tree Search

While local search starts its stochastic exploration of the search space from a random
state, there exist other algorithms that use a manually defined initial state—such as the
start symbol of a context-free gramar—as starting point. One such algorithm is Monte
Carlo Tree Search. Monte Carlo Tree Search (MCTS) is a stochastic, best-first tree
search algorithm that directs the search towards an optimal decision without requiring
much domain knowledge. The algorithm builds a search tree through reinforcement
learning by performing random simulations—similar to an objective function—that
estimate the quality of a node [49]. Since it follows preferably nodes with a good score,
the tree grows asymmetrically. MCTS has had significant impact in artificial intelligence
for computer games [82, 153, 192, 207], especially in the context of Computer Go [89, 201].
Thus, its inner workings are often explained using game-related vocabulary.

In an MCTS tree, each node represents a game state; a directed link from a parent node
to its child node represents a move in the game’s domain. The core algorithm iteratively
builds the decision tree in four main steps that are also illustrated in Figure 2.2: (1) The
selection step starts at the root node and successively selects the most promising child
node until an expandable leaf (i. e., a non-terminal node that has unvisited children)
is reached. (2) Afterward, one or more unvisited child nodes are added to the tree in
the expansion step. (3) In the simulation step, node rewards are determined for the
new nodes through random playouts. Therefor, consecutive game states are randomly
derived until a terminal state (i. e., the end of the game) is reached; the game’s outcome
is represented by a reward. (4) Finally, the node rewards are propagated backward
through the selected nodes to the root in the backpropagation step. The algorithm
terminates if either a specified time or iteration limit is reached or if an optimal solution
is found [49, 58].

Selecting the most promising child node can be treated as a so-called multi-armed bandit
problem, in which a gambler tries to maximize the sum of rewards by choosing one out
of many slot machines with an unknown probability distribution. Applied to MCTS,
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Figure 2.2: Illustration of a single MCTS round (taken from Browne et al. [49]).

the Upper Confidence Bound for Trees (UCT) [49, 89, 137] provides a good balance
between exploration and exploitation. It is obtained by

Xj + C

√
lnn

nj

, (2.3)

where Xj represents the average reward of the child node j, n the current node’s number
of visits, nj the visits of the child node and C the exploration constant. The average
reward is referred to as exploitation parameter : if C is decreased, the search is directed
towards nodes with a higher reward. Increasing C, instead, leads to an intensified
exploration of nodes with few simulations.

2.4 Program Synthesis in the Context of This Work

After discussing different scenarios for SMT-based and stochastic program synthesis,
we now give a high-level overview of how we synthesize behavioral substitutes in
the following chapters. In general, a behavioral substitute refers to the output of a
synthesizer that is used to reason about program behavior in various contexts.

In Chapter 3, we simplify obfuscated code via program synthesis by learning bit-vector
formulas with the same input-output behavior. In an oracle-guided approach, we
use Monte Carlo Tree Search to generate bit-vector programs based on a context-free
grammar and guide the search via an objective function that uses different distance
metrics for bit-vectors.

In Chapter 4, we synthesize the structure of inputs and guide a fuzzer using structure-
aware mutations to find vulnerabilities in language interpreters and parsers. In this
scenario, we use a feedback-driven fuzzer as oracle. Feedback in the form of triggered
code coverage allows us to extract structural patterns of the target language by removing
parts from inputs that are irrelevant for the observed coverage.
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In Chapter 5, we synthesize Boolean predicates that isolate crashing behavior from a
set of crashing and non-crashing inputs. These predicates are used to pinpoint the root
cause of a crash. To generate them, we use a template-based synthesis approach to
learn different predicate types such as control-flow or register predicates. Therefor, we
use a statistical approach to locate the best predicates that distinguish crashes from
non-crashes in a finite set of trace information representing crashing and non-crashing
program behavior.
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Chapter 3

Expression Synthesis to Simplify
Obfuscated Code

3.1 Introduction

Code obfuscation describes the process of applying an obfuscating transformation to an
input program to obtain an obfuscated copy of the program. Said copy should be more
complex than the input program such that an analyst cannot easily reason about it. An
obfuscating transformation is further desired to be semantics-preserving, i. e., it must
not change observable program behavior [64]. Code obfuscation can be leveraged in
many application domains, for example in software protection solutions to prevent illegal
copies, or in malicious software to impede the analysis process. In practice, different
kinds of obfuscation techniques are used to hinder the analysis process. Most notably,
industry-grade obfuscation solutions are typically based on Virtual Machine (VM)-
based transformations [168, 202, 208, 213], which are considered one of the strongest
obfuscating transformations available [35]. While these protections are not perfect and
in fact are broken regularly, attacking them is still a time-consuming task that requires
highly specific domain knowledge of the individual Virtual Machine implementation.
Consequently, for example, this gives game publishers a head-start in which enough
revenue can be generated to stay profitable. On the other hand, obfuscated malware
stays under the radar for a longer time, until concrete analysis results can be used to
effectively defend against it.

To deal with this problem, prior research has explored many different approaches to
enable deobfuscation of obfuscated code. For example, Rolles proposes static analysis to
aid in deobfuscation of VM-based obfuscation schemes [183]. However, it incorporates
specific implementation details an attacker has to know a priori. Further, static analysis
of obfuscated code is notoriously known to be intractable in the general case [64]. Hence,
recent deobfuscation proposals have shifted more towards dynamic analysis [66, 224, 225].
Commonly, they produce an execution trace and use techniques such as (dynamic)
taint analysis or symbolic execution to distinguish input-dependent instructions. Based
on their results, the program code can be reduced to only include relevant, input-
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dependent instructions. This effectively strips the obfuscation layer. Even though
such deobfuscation approaches sound promising, recent work proposes several ways
to effectively thwart underlying techniques, such as symbolic execution [35]. For this
reason, it suggests itself to explore distinct techniques that may be leveraged for code
deobfuscation.

In this chapter, we propose an approach orthogonal to prior work on approximating the
underlying semantics of obfuscated code. Instead of manually analyzing the instruction
handlers used in virtualization-based (VM) obfuscation schemes in a complex and
tedious manner [183] or learning merely the bytecode decoding (not the semantics)
of these instruction handlers [199], we aim at learning the semantics of VM-based
instruction handlers in an automated way. Furthermore, our goal is to develop a generic
framework that can deal with different use cases. Naturally, this includes constructs
close to obfuscation, such as Mixed Boolean-Arithmetic (MBA), different kinds of
VM-based obfuscation schemes, or even analysis of code chunks (so called gadgets) used
in Return-oriented Programming (ROP) exploits.

To this extend, we explore how program synthesis can be leveraged to tackle this problem.
Broadly speaking, program synthesis describes the task of automatically constructing
programs for a given specification. While there exists a variety of program synthesis
approaches [102], we focus on SMT-based and stochastic program synthesis in the
following, given its proven applicability to problem domains close to trace simplification
and deobfuscation. SMT-based program synthesis constructs a loop-free program based
on first-order logic constraints whose satisfiability is checked by an SMT solver. For
component-based synthesis, components are described that build the instruction set of a
synthesized program; for instance, components may be bitwise addition or arithmetic
shifts. The characteristics of a well-formed program such as the interconnectivity of
components are defined and the semantics of the program are described as a logical
formula. Then, an SMT solver returns a permutation of the components that forms
a well-encoded program following the previously specified intent [104, 123], if it is
satisfiable, i. e., such a permutation does exist.

Instead of relying on a logical specification of program intent, oracle-guided program
synthesis uses an input-output (I/O) oracle. Given the outputs of an I/O oracle for
arbitrary program inputs, program synthesis learns the oracle’s semantics based on a
finite set of I/O samples. The oracle is iteratively queried with distinguishing inputs that
are provided by an SMT solver. Locating distinguishing inputs is the most expensive
task in this approach. The resulting synthesized program has the same input-output
behavior as the I/O oracle [123]. Contrary to SMT-based approaches that only construct
semantically correct programs, stochastic synthesis approximates program equivalence
and thus remains faster. In addition, it can also find partial correct programs. Program
synthesis is modeled as heuristic optimization problem, where the search is guided
by a cost function. It determines, for instance, output similarity of the synthesized
expression and the I/O oracle for same inputs [193].

As program synthesis is indifferent to code complexity, it can synthesize arbitrarily
obfuscated code and is only limited by the underlying code’s semantic complexity.
We demonstrate that a stochastic program synthesis algorithm based on Monte Carlo
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Tree Search (MCTS) achieves this in a scalable manner. To show feasibility of our
approach, we automatically learned the semantics of 489 out of 500 MBA-obfuscated
random expressions. Furthermore, we synthesize the semantics of arithmetic instruction
handlers in two state-of-the art commercial virtualization-based obfuscators with a
success rate of more than 94%. Finally, to show applicability to areas more focused on
security aspects, we further automatically learn the semantics of ROP gadgets.

Contributions In summary, we make the following contributions:

• We introduce a generic approach for trace simplification based on program synthe-
sis to obtain the semantics of different kinds of obfuscated code. We demonstrate
how Monte Carlo Tree Search (MCTS) can be utilized in program synthesis to
achieve a scalable and generic approach.

• We implement a prototype of our method in a tool called Syntia. Based on I/O
samples from assembly code as input, Syntia can apply MCTS-based program
synthesis to compute a simplified expression that represents a deobfuscated version
of the input.

• We demonstrate that Syntia can be applied in several different application
domains such as simplifying MBA expressions by learning their semantics, learning
the semantics of arithmetic VM instruction handlers and synthesizing the semantics
of ROP gadgets.

3.2 Challenges in Code Deobfuscation
Before presenting our approach to utilize program synthesis for recovering the semantics
of obfuscated code, we first review several concepts and techniques we use throughout
the rest of the chapter.

3.2.1 Obfuscation

In the following, we discuss several techniques that qualify as an obfuscating transfor-
mation, namely virtualization-based obfuscation, Return-oriented Programming and
Mixed Boolean-Arithmetic.

3.2.1.1 Virtualization-based Obfuscation

Contemporary software protection solutions such as VMProtect [213], Themida [168],
and major game copy protections such as SecuROM base their security on the concept
of Virtual Machine-based obfuscation (also known as virtualization-based obfusca-
tion [183]).

Similar to system-level Virtual Machines (VMs) that emulate a whole system platform,
process-level VMs emulate a foreign instruction set architecture (ISA). The core idea
is to translate parts of a program, e. g., a function f containing intellectual property,
from its native architecture—say, Intel x86—into a custom VM-ISA. The obfuscator
then embeds both the bytecode of the virtualized function (its instructions encoded
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Figure 3.1: The Fetch–Decode–Execute cycle of a Virtual Machine. Native code
calls into the VM, upon which startup code is executed (VM entry). It performs the
context switch from native to VM context. Then, the next instruction is fetched from
the bytecode stream, mapped to the corresponding handler using the handler table
(decoding) and, finally, the handler is executed. The process repeats for subsequent VM
instructions in the bytecode until the exit handler is executed, which returns back to
native code.

for the VM-ISA) along with an interpreter for the new architecture into the target
binary whilst removing the function’s original, native code. Every call to f is then
replaced with an invocation of the interpreter. This effectively thwarts any naive
reverse engineering tool operating on the native instruction set and forces an adversary
to analyze the interpreter and re-translate the interpreted bytecode back into native
instructions. Commonly, the interpreter is heavily obfuscated itself. As VM-ISAs can
be arbitrarily complex and generated uniquely upon protection time, this process is
highly time-consuming [183].

Components. The (VM) context holds internal variables of the VM-ISA such as
general-purpose registers or the virtual instruction pointer. It is initialized by sequence
called VM entry, which handles the context switch from native code to bytecode.

After initialization, the VM dispatcher fetches and decodes the next instruction and
invokes the corresponding handler function by looking it up in a global handler table
(depicted in Figure 3.1). The latter maps indices, obtained from the instruction’s
bytecode in the decoding step, to handlers addresses. In its most simple implementation,
all handler functions return to a central dispatching loop which then dispatches the
next handler. Eventually, execution flow reaches a designated handler, VM exit, which
performs the context switch back to the native processor context and transfers control
back to native code.
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Custom ISA. The design of the target VM-ISA is entirely up to the VM designer.
Still, to maximize the amount of handlers an analyst has to reverse engineer, VMs
often opt for reduced complexity for the individual handlers, akin to the RISC design
principle. To exemplify, consider the following Intel x86 code:

mov eax , dword ptr [ 0 x401000 + ebx ∗ 4 ]
pop dword ptr [ eax ]

This might get translated into VM-ISA as follows:

vm_mov T0 , vm_context . real_ebx
vm_mov T1 , 4
vm_mul T2 , T0 , T1
vm_mov T3 , 0x401000
vm_add T4 , T2 , T3
vm_load T5 , dword (T4)
vm_mov vm_context . real_eax , T5
vm_mov T6 , T5
vm_mov T7 , vm_context . rea l_esp
vm_add T8 , T7 , T1
vm_mov vm_context . real_esp , T8
vm_load T9 , dword (T7)
vm_store dword (T6) , T9

It favors many small, simple handlers over fewer more complicated ones.

Bytecode Blinding. In order to prevent global analysis of instructions, the bytecode
bc of each VM instruction is blinded based on its instruction type, i. e., its corresponding
handler h, at protection time. Likewise, each handler unblinds the bytecode before
decoding its operands: (bc, vm_key)← unblindh(blinded_bc, vm_key).

The routine is parameterized for each handler h and updates a global key register in the
VM context. Consequently, instruction decoding can be flow-sensitive: An adversary is
unable to patch a single VM instruction without re-blinding all subsequent instructions.
This, in turn, requires her to extract the unblinding routines from every handler involved.
The individual unblinding routines commonly consist of a combination of arithmetic
and logical operations.

Handler Duplication. In order to easily increase analysis complexity, common VMs
duplicate handlers such that the same virtual instruction can be dispatched by multiple
handlers. In presence of bytecode blinding, these handlers’ semantics only differ in
the way they unblind the bytecode, but perform the same operation on the VM
context.

Architectures. In his paper about interpretation techniques, Klint denotes the
aforementioned concept using a central decoding loop as the “classical interpreta-
tion method” [135]. An alternative is proposed by Bell with Threaded Code (TC) [39]:
He suggests inlining the dispatcher routine into the individual handler functions such
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that handlers execute in a chained manner, instead of returning to a central dispatcher.
Nevertheless, the dispatcher still indexes a global handler table.

In Klint’s paper, however, he describes an extension of TC, Direct Threaded Code (DTC).
As in the TC approach, the dispatcher is appended to each handler. The handler table,
though, is inlined into the bytecode of the instruction. Each instruction now directly
specifies the address of its corresponding handler. This way, in presence of bytecode
blinding, not all handler addresses are exposed immediately, but only those used on a
certain path in the bytecode.

Attacks. Several academic works have been published that propose novel attacks on
virtualization-based obfuscators [66, 183]. Section 3.6.3 discusses and classifies them.
In addition, it draws a comparison to our approach.

3.2.1.2 Return-oriented Programming

In Return-oriented Programming (ROP) [139, 198], shellcode is expressed as a so-called
ROP chain, a list of references to gadgets and parameters for those. In the preliminary
step of an attack, the adversary makes esp point to the start of the chain, effectively
triggering the chain upon function return. Gadgets are small, general instruction
sequences ending on a ret instruction; other flavors propose equivalent instructions.
Concrete values are taken from the ROP chain on the stack. As an example, consider
the gadget pop eax; ret: It takes the value on top of the stack, places it in eax
and, using the ret instruction, dispatches the next gadget in the chain. By placing
an arbitrary immediate value imm32 next to this gadget’s address in the chain, an
attacker effectively encodes the instruction mov eax, imm32 in her ROP shellcode.
Depending on the gadget space available to the attacker, this technique allows for
arbitrary computations [170, 196].

Automated analysis of ROP exploits is a desirable goal. However, its unique structure
poses various challenges compared to traditional shellcode detection. In their paper,
Graziano et al. outline them and propose an analysis framework for code-reuse at-
tacks [100]. Amongst others, they mention challenges such as verbosity of the gadgets,
stack-based chaining, lack of immediates, and the distinction of function calls and
regular control flow. Further, they stress how an accurate emulation of gadgets is
important for addressing these challenges. Considering the aforementioned challenges,
at its core, Return-oriented Programming can be seen as an albeit weaker flavor of
obfuscated code. In particular, the chained invocation of gadgets is reminiscent of
handlers in VM-based obfuscation schemes following the threaded code principle.

In addition to its application to exploitation, ROP has seen other fields of applications
such as rootkit development [214], software watermarking [151], steganography [150],
and code integrity verification [30], which reinforces the importance of automatic ROP
chain analysis.
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3.2.1.3 Mixed Boolean-Arithmetic

Zhou et al. propose transformations over Boolean-arithmetic algebras to hide constants
by turning them into more complex, but semantically equivalent expressions, so called
MBA expressions [80, 236]. In Section 3.6.2, we provide details on their proposal of
MBA expressions and show how our approach is still able to simplify them.

3.2.2 Trace Simplification

Due to the complexity of static analysis of obfuscated code, many deobfuscation ap-
proaches proposed recently make use of dynamic analysis [66, 100, 100, 199, 225].
Notably, they operate on execution traces that record instruction addresses and ac-
companying metadata, e. g., register content, along a concrete execution path of a
program. Subsequently, trace simplification is performed to strip the obfuscation layer
and simplify the underlying code. Depending on the approach, multiple traces are used
for simplification or one single trace is reduced independently.

Coogan et al. [66] propose value-based dependence analysis of a trace in order to track
the flow of values into system calls using an equational reasoning system. This allows
them to reduce the trace to those instructions relevant to the previously mentioned
value flow.

Graziano et al. [100] mainly apply standard compiler transformations such as dead code
elimination or arithmetic simplifications to reduce the trace.

Yadegari et al. [225] use bit-level taint analysis to identify instructions relevant to
the computation of outputs. For subsequent simplification, they introduce the notion
of quasi-invariant locations with respect to an execution. These are locations that
hold the same value at every use in the trace and can be considered constants when
performing constant propagation. Similarly, they use several other compiler optimiza-
tions and adapt them to make use of information about quasi-invariance to prevent
over-simplification.

3.3 Design

Given an instruction trace, we dissect the instruction trace into trace windows (i. e.,
subtraces) and aim at learning their high-level semantics which can be used later on for
further analysis. In the following, we describe our approach which is divided into three
distinct parts:

1. Trace Dissection. The instruction trace is partitioned into unique sequences of
assembly instructions in a (semi-)automated manner.

2. Random Sampling. We derive random input-output pairs for each trace window.
These pairs describe the trace window’s semantics.

3. Program Synthesis. Expressions that map all provided inputs to their correspond-
ing outputs are synthesized.
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Figure 3.2: Dissecting a given trace (a) into several trace windows (b). The trace
windows can be used to reconstruct a (possibly disconnected) control-flow graph (c).

3.3.1 Trace Dissection

The choice of trace window boundaries highly impacts later analysis stages. Most notably,
it affects synthesis results: if a trace window ends at an intermediary computation step,
the synthesized formula is not necessarily succinct or meaningful at all, as it includes
spurious semantics.

Yet, we note how trace dissection of ROP chains and VM handlers lends itself to a
simple heuristic. Namely, we split traces at indirect branches. In the ROP case, this
describes the transition between two gadgets (commonly, on a ret instruction), whereas
for VM handlers it distinguishes the invocation of the next handler (cf. Section 3.6.3).
Figure 3.2 illustrates the approach. Given concrete trace window boundaries, we can
reconstruct a control-flow graph consisting of multiple connected components. A trace
window then describes a particular path through a connected component.

3.3.2 Random Sampling

The goal of random sampling is to derive input-output relations that describe the
semantics of a trace window. This happens in two steps: First, we determine the inputs
and outputs of the trace window. Then, we replace the inputs with random values and
obverse the outputs.

Generally speaking, we consider register and memory reads as inputs and register and
memory writes as outputs. For inputs, we apply a read-before-write principle: inputs
are only registers/memory locations that are read before they have been written; for
outputs, we consider the last writes of a register/memory location as output.

mov rax , [ rbp + 0x8 ]
add rax , rcx
mov [ rbp + 0x8 ] , rax
add [ rbp + 0x8 ] , rdx

Following this principle, the code above has three inputs and two outputs: The inputs
are the memory read M0 in line 1, rcx (line 2) and rdx (line 4). The two outputs are
o0 (line 2) and o1 (line 4).
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In the next step, we generate random values and obverse the I/O relationship. For
instance, we obtain the outputs (7, 14) for the input tuple (2, 5, 7); for the inputs
(1, 7, 10), we obtain (8, 18).

By default, we use register locations as well as memory locations as inputs and outputs.
However, we support the option to reduce the inputs and outputs to either register or
memory locations. For instance, if we know that registers are only used for intermediate
results, we may ignore them since it reduces the complexity for the synthesis.

3.3.3 Synthesis

This section demonstrates how we synthesize the semantics of assembly code; we discuss
the inner workings of our synthesis approach in the next section.

After we obtained the I/O samples, we combine the different samples and synthesize
each output separately. These synthesis instances are mutually independent and can be
completely parallelized.

To exemplify, for the I/O pairs above, we search an expression that transforms (2, 5, 7)
to 7 and (1, 7, 10) to 8 for o0; for o1, the expression has to map (2, 5, 7) to 14 and (1, 7, 10)
to 18. Then, the synthesizer finds o0 = M0 + rcx and o1 = M0 + rcx + rdx.

3.4 Program Synthesis

In the last section, we demonstrated how we obtain I/O samples from assembly code
and apply program synthesis to that context. This section describes our algorithm in
detail; we show how we find an expression that maps all inputs to their corresponding
outputs for all observed samples. We use Monte Carlo Tree Search, since it has been
proven to be very effective when working on infinite decision trees without requiring
much domain knowledge.

We consider program synthesis as a single-player game whose purpose is to synthesize
an expression whose input-output behavior is as close as possible to given I/O samples.
In essence, we define a context-free grammar that consists of terminal and non-terminal
symbols. (Partially) derived words of the grammar are game states; the grammar’s
production rules represent the moves of the game. Terminal nodes are expressions that
contain only terminal symbols; these are end states of the game.

Given a maximum number of iterations and I/O samples, we iteratively apply the four
MCTS steps (cf. Section 2.3.2.2), until we find a solution or we reach the timeout.
Starting with a non-terminal expression as root node, we select the most-promising
expandable node. A node is expandable, if there still exist production rules that have
not been applied to this node. We choose a production rule randomly and expand
the selected node. To evaluate the quality of the new node, we perform a random
playout : First, we randomly derive a terminal expression by successively applying
random production rules. Then, we evaluate the expressions based on the inputs from
the I/O pairs and compare the output similarity. The similarity score is the node reward.
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A reward of 1 ends the synthesis, since the input-output behavior is the same for the
provided samples. Finally, we propagate the reward back to the root.

In the following, we give details on node selection, our grammar, random playouts
and backpropagation. Finally, we discuss the algorithm configuration and parameter
tuning. To demonstrate the different steps of our approach, we use the following running
example throughout this section:

Example 3.1 (I/O relationship). Working with bit-vectors of size 3 (i. e., modulo
23), we observe for an expression with two inputs and one output the I/O relations:
(2, 2) → 4 and (4, 5) → 1. A synthesized expression that maps the inputs to the
corresponding outputs is f(a, b) = a+ b.

3.4.1 Node Selection

Since we have an infinite search space for program synthesis, node selection must be a
trade-off between exploration and exploitation. The algorithm has to explore different
nodes such that several promising and non-promising candidates are known. On the
other hand, it has to follow more promising candidates to find deeper expressions.
As described in Section 2.3.2.2, the UCT (cf. Equation 2.3) provides a good balance
between exploitation and exploration for many MCTS applications.

However, we observed that it does not work for our use case: if we set the exploration
constant C to a higher value (focus on exploration), it does not find deeper expressions;
if we set C to a lower value, MCTS gets lost in deep expressions. To solve this
problem, we use an adaption of UCT that is known as Simulated Annealing UCT
(SA-UCT) [187]. The main idea of SA-UCT is to use the characteristics of Simulated
Annealing (cf. Section 2.3.2.1) and apply it to UCT. SA-UCT is obtained by replacing
the exploration constant C by a variable T with

T = C
N − i
N

, (3.1)

where N is the maximum number of MCTS iterations and i the current iteration. Then,
SA-UCT is defined as

Xj + T

√
lnn

nj

. (3.2)

T decreases over time, since N−i
N

converges to 0 for increasing values of i. As a result,
MCTS places the emphasis on exploration in the beginning; the more T decreases, the
more the focus shifts to exploitation.

3.4.2 Grammar

Game states are represented by sentential forms of a context-free grammar that describes
valid expressions of our high-level abstraction. We introduce a terminal symbol for
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each input (which corresponds to a variable that stores this input) and each valid
operator (e. g., addition or multiplication). For every data type that can be computed
we introduce one non-terminal symbol (in our running example, we only use a single non-
terminal value U that represents an unsigned integer). The production rules describe
how we can derive expressions in our high-level description. Since the sentential forms
represent partial expressions, we will use the term expression to denote the (partial)
expression that is represented by a given sentential form. Sentences of the grammar
are final states in the game since they do not allow any further moves (derivations).
They represent expressions that can be evaluated. We represent expressions in Reverse
Polish Notation (RPN).

Example 3.2. The grammar in our previous example has two input symbols V =
{a, b}, since each I/O sample has two inputs. If the grammar supports addition and
multiplication O = {+, ∗}, there are four production rules: R = {U → U U + | U U ∗
| a | b}. An unsigned integer expression U can be mapped to an addition or multiplication
of two such expressions or a variable. The final grammar is ({U},Σ = V ∪O,R,U).

Synthesis Grammar.

Our grammar is designed to synthesize expressions that represent the semantics of bit-
vector arithmetic, especially for the x86 architecture. For every data type (U8, U16, U32

and U64), we define the set of operations asO = {+,−,∗,/s,/,%s,%,∧,∨,⊕,�,�,�a,−1,¬,
sign_ext, zero_ext, extract, ++, 1}, where the operations are binary addition, sub-
traction, multiplication, signed/unsigned division, signed/unsigned remainder, bitwise
and/or/xor, logical left shift, logical/arithmetic right shift as well as unary minus
and complement. The unary operations sign_ext and zero_ext extend smaller data
types to signed/unsigned larger data types. Conversely, the unary operator extract
transforms larger data types into smaller data types by extracting the respective least
significant bits. Since the x86 architecture allows register concatenation (e. g., for
division), we employ the binary operator ++ to concatenate two expressions of the
same data type. Finally, to synthesize expressions such as increment and decrement, we
use the constant 1 as niladic operator. The input set V consists of |V | = n variables,
where n represents the number of inputs.

Tree Structure. The sentential form U is the root node of the MCTS tree. Its child
nodes are other expressions that are produced by applying the production rules to a
single non-terminal symbol of the parent. The expression depth (referred to as layer) is
equivalent to the number of derivation steps, as depicted in Figure 3.3.

Example 3.3. The root node U is an expression of layer 0. Its children are a, b,
U U +, and U U ∗, where a and b are terminal expressions of layer 1. Assuming that
the right-most U in an expression is replaced, the children of U U + are U b +, U a +,
U U U + +, and U U U ∗ +. To obtain the layer 3 expression b a +, the following
derivation steps are applied: U ⇒ U U +⇒ U a +⇒ b a +.

To direct the search towards outer expressions, we replace the top-most-right-most
non-terminal. If we, instead, substitute always the right-most non-terminal only, then
the search would be guided towards most-promising subexpressions. If the expression
is too nested, the synthesizer would find the partial subexpression but not the whole
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Figure 3.3: An MCTS tree for program synthesis that grows towards the most-
promising node b a +, the right-most leaf in layer 3.

expression. The top-most-right-most derivation is illustrated in Figure 3.4, which shows
the abstract syntax tree (AST) of an expression.

+

U3*

U2U1

Figure 3.4: The left-most U in U3 U2 U1 ∗ + is the top-most-right-most non-terminal
in the abstract syntax tree. (The indices are provided for illustrative purposes only.)

Example 3.4. The expression (U + (U ∗ U)) is represented as U U U ∗ +. If we
successively replace the right-most U , the algorithm is unlikely to find expressions such
as ((a+b)+(b∗(b∗a))), since it is directed into the subexpression with the multiplication.
Instead, replacing the top-most-right-most non-terminal directs the search to the top-most
addition and then explores the subexpressions.

3.4.3 Random Playout

One of the key concepts of MCTS are random playouts. They are used to determine
the outcome of a node; this outcome is represented by a reward. In the first step,
we randomly apply production rules to the current node, until we obtain a terminal
expression. To avoid infinite derivations, we set a maximum playout depth. This
maximum playout depth defines how often a non-terminal symbol can be mapped to
rules that contain non-terminal symbols; at the latest we reached the maximum, we
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map non-terminals only to terminal expressions. This happens in a top-most-right-most
manner. Afterward, we evaluate the expression for all inputs from the I/O samples.

Example 3.5. Assuming a maximum playout depth of 2 and the expression U U ∗,
the first top-most-right-most U is randomly substituted with U U ∗, the second one with
U U +. After that, the remaining non-terminal symbols are randomly replaced with
variables: U U ∗ ⇒ U U U ∗ ∗ ⇒ U U + U U ∗ ∗ ⇒ · · · ⇒ a a + b a ∗ ∗. A
random playout for U U + is a b b + +.

For the I/O sample (2, 2)→ 4, we evaluate g(2, 2) = 0 for g(a, b) = ((a+ a) ∗ (b ∗ a))
mod (28) and h(2, 2) = 6 for h(a, b) = (a+ (b+ b)) mod 28.

We set terminal nodes to inactive after their evaluation, since they already are end
states of the game; there is no possibility to improve the node’s reward by random
playouts. As a result, MCTS will not take these nodes into account in further iterations.
The node’s reward is the similarity of the evaluated expressions and the outputs from
the I/O samples. We describe in the following section how to measure the similarity to
the outputs.

3.4.4 Measuring Similarity of Outputs

To measure the similarity of two outputs, we compare values with different metrics:
arithmetic distance, Hamming distance, count leading zeros, count trailing zeros, count
leading ones and count trailing ones. While the numeric distance is a reliable metric
for arithmetic operations, it does not work well with overflows and bitwise operations
(e. g., xor and shifts). In turn, the Hamming distance addresses these operations since
it states in how many bits two values differ. Finally, the leading/trailing zeros/ones are
strong indicators that two values are in the same range. We scale each result between a
value of 0 and 1. Since the different metrics compensate each other, we set the total
similarity reward to the average reward of all metrics.

Example 3.6. Considering I/O pair (2, 2) → 4, the output similarities for g and h
(as defined in Example 3.5) are similarity(4, 0) and similarity(4, 6). Limiting to the
metrics of Hamming distance and count leading zeros (clz), we obtain hamming(4, 0) =
hamming(4, 6) = 0.67, clz(4, 0) = 0 and clz(4, 6) = 1.0. Therefore, the average
similarities are similarity(4, 0) = 0.335 and similarity(4, 6) = 0.835. Related to the
random playouts, the evaluated node U U + has a higher reward than U U ∗.

During a random playout, we calculate the similarity for all I/O samples. The final node
reward is the average score of all similarity rewards. A reward of 1 finishes program
synthesis, since the evaluated expression produces exactly the outputs from the I/O
samples.

3.4.5 Backpropagation

After obtaining a score by random playout, we do the following for the selected node
and all its parents, up to the root: (1) We update the node’s average reward. This
reward is averaged based on the node’s and its successors’ total number of random
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playouts. (2) If the node is fully expanded and its children are all inactive, we set the
node to inactive. (3) Finally, we set the current node to its parent node.

3.4.6 Expression Simplification

Since MCTS performs a stochastic search, synthesized expressions are not necessary in
their shortest form. Therefore, we apply some basic standard expression simplification
rules. For example, if the synthesizer constructs integer values as ((1� 1)� (1 + (1�
1))), we can reduce them to the value 16.

3.4.7 Algorithm Configuration

Two main factors define the algorithm’s success that cannot be influenced by the user:
the number of input variables and the complexity (e. g., depth) of the expression to
synthesize. Contrary, there exist four parameters that can be configured by a user
to improve the effectiveness and speed: the initial SA-UCT value, the number of
I/O samples, the maximum number of MCTS iterations and the maximum playout
depth.

The SA-UCT parameter T configures the trade-off between exploration and exploitation
and depends on the maximum number of MCTS iterations; if the maximum number
of MCTS iterations is low, the algorithm focuses on exploiting promising candidates
within a small period of time. The same holds for small initial values of T .

A large number of variables or a higher expression depth requires more MCTS iterations.
Besides the maximum number of MCTS iterations, the maximum playout depth provides
more accuracy since it is more probable to hit deeper expressions or more influencing
variables with deeper playouts. On the other hands, deeper playouts have an impact on
the execution time.

Since random playouts are performed for every node and for every I/O pair, the number
of I/O samples has a significant impact on the execution time. In addition, it effects
the number of false positives, since there are less expressions that have the same I/O
behavior for a larger number of I/O samples. Finally, the MCTS synthesis is more
precise since the different node rewards are expected to be informative.

Since the search space for finding good algorithm configurations for different complexity
classes is large, we approximate an optimal solution by Simulated Annealing. We
present the details and results in Section 3.6.1.

3.5 Implementation

We implemented a prototype implementation of our approach in our tool Syntia,
which is written in Python. For trace generation and random sampling, we use the
Unicorn Engine [177], a CPU emulator framework. To analyze assembly code (e. g.,
trace dissection), we utilize the disassembler framework Capstone [178]. Furthermore,
we use the SMT solver Z3 [158] for expression simplification.
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Initially, Syntia expects a memory dump, a start and an end address as input. Then,
it emulates the program and outputs the instruction trace. Then, the user has the
opportunity to define its own rules for trace dissection; otherwise, Syntia dissects
the trace at indirect control transfers. Additionally, the user has to decide if register
and/or memory locations are used as inputs/outputs and how many I/O pairs shall
be sampled. Syntia traces register and memory modifications in each trace window,
derives the inputs and outputs and generates I/O pairs by random sampling. The last
step can be parallelized for each trace window. Finally, the user defines the synthesis
parameters. Syntia creates a synthesis tasks for each (trace window, output) pair.
The synthesis tasks are performed in parallel. The synthesis results are simplified by
Z3’s term-rewriting engine.

3.6 Experimental Evaluation
In the following, we evaluate our approach in three areas of application. The experiments
have been evaluated on a machine with two Intel Xeon E5-2667 CPUs (in total, 12
cores and 24 threads) and 96 GiB of memory. However, we never have used more than
32 GiB of memory even though parallel I/O sampling for many trace windows can be
memory intensive; synthesis itself never used more than 6 GiB of memory.

3.6.1 Parameter Choice

As described in Section 3.4.7, we approximate an optimal algorithm configuration with
Simulated Annealing. To compute preferably representative results, we generate a set
of 1, 200 randomly generated expressions. We divide this set into three classes with
400 expressions each; to prevent overfitting the parameters on a fixed set of inputs, the
experiments of each class are performed with distinct input samples.

In each iteration, Simulated Annealing synthesizes the 1, 200 expressions under the
same configuration. We set a timeout of 120 seconds for each synthesis task and
prune non-successful tasks by a constant factor of the timeout. As a result, Simulated
Annealing optimizes towards a high success rate for synthesis tasks and a minimal
average time. Table 3.1 lists the initial algorithm configuration and the parameter
boundaries.

Table 3.1: Initial Simulated Annealing configuration and the parameter’s lower/upper
bounds.

parameter initial lower bound upper bound

SA-UCT 1.0 0.7 2.0
# MCTS iterations 2,000 500 50,000
# I/O samples 30 10 60
playout depth 1 0 2

We aim at determining optimal parameters for different complexity classes. Classes
are distinguished by the number of variables and by the expression’s layer. Table 3.2
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Table 3.2: Parameter choices for different complexity classes that depend on the
expression layer and the number of variables. The parameters are the SA-UCT parameter
(SA), the maximum number of MCTS iterations (# iter), the number of I/O samples
(# I/O) and the playout depth (PD).

# variables

2 5 10 20

layer SA # iter # I/O PD SA # iter # I/O PD SA # iter # I/O PD SA # iter # I/O PD

3 1.42 40,569 20 0 1.55 32,375 17 0 1.74 42,397 20 1 1.38 28,089 18 1
5 1.84 35,399 14 0 1.11 28,792 23 0 1.29 27,365 23 0 0.92 34,050 12 0
7 1.25 28,363 20 0 1.01 30,838 23 0 1.23 15,285 22 0 1.42 11,086 22 0

illustrates the final configurations for 12 different complexity classes after 50 Simulated
Annealing iterations. While the I/O samples and the playout depth are mostly in a
similar range (0 and 20), there is a larger scope for the SA-UCT parameter and the
maximum number of MCTS iterations. Especially for higher complexity classes, this
is due to the optimization towards a high success rate within 120 seconds. The latter
parameters strive towards larger values without this timeout.

Generally, the parameter configurations set a focus on exploration instead of exploitation.
We follow this observation and adapt the configuration based on our problem statements.
To describe a configuration, we provide a configuration vector of the form (SA-UCT,
#iter, #I/O, PD).

3.6.2 Mixed Boolean-Arithmetic

Zhou et al. proposed the concept of MBA expressions [236]. By transforming simpler
expressions and constants into MBA expressions over Boolean-arithmetic algebras, they
can generate semantically-equivalent, but much more complex code which is arguably
hard to reverse engineer. Effectively, this obfuscating transformation allows them to hide
formulas and constants in plain code. In their paper, they define a Boolean-arithmetic
algebra as follows:

Definition 3.1 (Boolean-arithmetic algebra [236]). With n a positive integer
and B = {0, 1}, the algebraic system (Bn,∧,∨,⊕,¬,≤,≥, >,<,≤s,≥s, >s, <s, 6=,=,
�s,�,�,+,−, ·), where �,� denote left and right shifts, · (or juxtaposition) denotes
multiply, and signed compares and arithmetic right shift are indicated by s, is a Boolean-
arithmetic algebra (BA-algebra), BA[n]. n is the dimension of the algebra.

Specifically, they highlight how BA[n] includes, amongst others, the Boolean algebra
(Bn,∧,∨,¬) as well as the integer modular ring Z/(2n). As a consequence, Mixed
Boolean-Arithmetic (MBA) expressions over Bn are hard to simplify in practice. In
general, we note that reducing a complex expression to an equivalent, but simpler one
by, e. g., removing redundancies, is considered NP-hard [144].

Zhou et al. represent MBA expressions as polynomials over BA[n]. While polynomial
MBA expressions are conceptually not restricted in terms of complexity, Zhou et al.
define linear MBA expressions as those polynomials with degree 1. In particular,
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Table 3.3: Trace window statistics and synthesis performance for Tigress (MBA),
VMProtect (VMP), Themida (flavor Tiger White, TM), and ROP gadgets.

MBA VMP TM ROP

#trace windows 500 12,577 2,448 78
#unique windows 500 449 106 78
#instructions per window 116 49 258 3
#inputs per window 5 2 15 3
#outputs per window 1 2 10 2
#synthesis tasks 500 1,123 1,092 178

I/O sampling time (s) 110 118 60 17
overall synthesis time (s) 2,020 4,160 9,946 829
synthesis time per task (s) 4.0 3.7 9.1 4.7

f(x, y) = x− (x⊕ y)− 2(x ∨ y) + 12564 is a linear MBA expression, whereas f(x, y) =
x+ 9(x ∨ y)yx3 is not.

Implementation in Tigress. In practice, MBA expressions are used in the Tigress C
Diversifier/Obfuscator by Collberg et al. [65] which uses the technique to encode integer
variables and expressions in which they are used [61]. Further, Tigress also supports
common arithmetic encodings to increase an expression’s complexity, albeit not based
on MBAs [62].

For example, the rather simple expression x + y + z is transformed into the layer 23
expression (((x⊕ y) + ((x ∧ y)� 1)) ∨ z) + (((x⊕ y) + ((x ∧ y)� 1)) ∧ z) using its
arithmetic encoding option. In a second transformation step, Tigress encodes it into a
linear MBA expression of layer 383 (omitted due to complexity). Such expressions are
hard to simplify symbolically.

Evaluation Results. We evaluated our approach to simplify MBA expressions using
Syntia. As a testbed, we built a C program which calls 500 randomly generated
functions. Each of these random functions takes 5 input variables and returns an
expression of layer 3 to 5. Then, we applied the arithmetic encoding provided by
Tigress, followed by the linear MBA encoding. The resulting program contained
expressions of up to 2, 821 layers, the average layer being 156. The arithmetic encoding
is applied to highlight that our approach is invariant to the code’s increased symbolic
complexity and is only concerned with semantical complexity.

Based on a concrete execution trace it can be observed that the 500 functions use, on
average, 5 memory inputs (as parameters are passed on the stack) and one register
output (the register containing the return value). Table 3.3 shows statistics for the
analysis run using the configuration vector (1.5, 50000, 50, 0). The first two components
indicate a strong focus on exploration in favor of exploitation; due to the small number
of synthesis tasks, we used 50 I/O samples to obtain more precise results.

The sampling phases completed in less than two minutes. Overall, the 500 synthesis
tasks were finished in about 34 minutes, i. e., in 4.0 seconds per expression. We were
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Figure 3.5: Subsequent synthesis runs increase the number of synthesized MBA
expressions. Each point represents the average cumulative number of synthesized
expressions from 15 separate experiments.

able to synthesize 448 out of 500 expressions (89.6%). The remaining expressions are
not found due to the probabilistic nature of our algorithm; after 4 subsequent runs, we
synthesized 489 expressions (97.8%) in total.

To get a better feeling for this probabilistic behavior, we compared the cumulative
numbers of synthesized MBA expressions for 10 subsequent runs. Figure 3.5 shows the
results averaged over 15 separate experiments. On average, the first run synthesizes
89.6% (448 expressions) of the 500 expressions. A second run yields 22 new expressions
(94.0%), while a third run reveals 10 more expressions (96.0%). While converging to 500,
the number of newly synthesized expressions decreases in subsequent runs. Comparing
the fifth and the eighth run, we only found 5 new expressions (from 489 to 494). After
the ninth run, Syntia synthesized 495 (99.0%) of the MBA expressions.

3.6.3 VM Instruction Handler

As introduced in Section 3.2.1.1, an instruction handler of a Virtual Machine implements
the effects of an atomic instruction according to the custom VM-ISA. It operates on
the VM context and can perform arbitrarily complex tasks. As handlers are heavily
obfuscated, manual analysis of a handler’s semantics is a time-consuming task.

Attacking VMs. When faced with virtualization-based obfuscations, an attacker
typically has two options. For one, she can analyze the interpreter and, for each handler,
extract all information required to re-translate the bytecode back to native instruction.
Especially in face of handler duplication and bytecode blinding, this requires her to
precisely capture all effects produced by the handlers. This includes both the high-level
semantics with regard to input and output variables as well as the individual unblinding
routines. In his paper, Rolles discusses how this type of attack requires complete
understanding of the VM and therefore has to be repeated for each virtualization
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obfuscator [183]. Thus, we note that this attack does not lend itself easily to full
automation. Another approach is to perform analyses on the bytecode level. The idea is
that while an attacker cannot learn the full semantics of the original code, the analysis
of the interaction of handlers itself reveals enough information about the underlying
code. This allows the attacker to skip details like bytecode blinding as she only requires
the high-level semantics of a handler. Sharif et al. successfully mounted such an attack
to recover the CFG of the virtualized function [199], but do not take semantics other
than virtual instruction pointer updates into account.

We recognize the latter approach as promising and note how Syntia allows us to
automatically extract the high-level semantics of arithmetical and logical instruction
handlers. This is achieved by operating on an execution trace through the interpreter
and simplify its individual handlers—as distinguished by trace window boundaries—
using program synthesis. Especially, we highlight how obtaining the semantics of
one handler automatically yields information about the underlying native code at all
points of the trace where this specific handler is used to encode equivalent virtualized
semantics.

Evaluation Setup. We evaluated Syntia to learn the semantics of arithmetic and
logical VM instruction handlers in recent versions of VMProtect [213] (v3.0.9) and
Themida [168] (v2.4.5.0). To this end, we built a program that covers bit-vector
arithmetic for operand widths of 8, 16, 32, and 64 bit. Since we are interested in
analyzing effects of the VM itself, using a synthetic program does not distort our results.
For verification, we manually reverse engineered the VM layouts of VMProtect and
Themida. Note that the commercial versions of both protection systems have been
used to obfuscate the program. These are known to provide better obfuscation strength
compared to the evaluation versions.

We argue that our evaluation program is representative of any program obfuscated
with the respective VM-based obfuscating scheme. As seen in Section 3.2.1.1, common
instructions map to a plethora of VM handlers. Consequently, if we succeed in recovering
the semantics of these integral building blocks, we are at the same time able to recover
other variations of native instructions using these handlers as well.

This motivates the design of our evaluation program, which aims to have a wide coverage
of all possible arithmetic and logical operations. We note that this may not be the
case for real-world test cases, which may not trigger all interesting VM handlers. To
this extent, our evaluation program is, in fact, more representative than, e. g., malware
samples.

3.6.3.1 VMProtect

In its current version, VMProtect follows the Direct Threaded Code design principle
(cf. Section 3.2.1.1). Each handler directly invokes the next handler based on the
address encoded directly in the instruction’s bytecode. Hence, reconstructing the
handlers requires an instruction trace. Also, this impacts trace dissection: since VM
handlers dispatch the next handler, they end with an indirect jump. Unsurprisingly,
Syntia could automatically dissect the instruction trace into trace windows that
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represent a single VM handler. As evident from Table 3.3, there are 449 unique trace
windows out of a total of 12, 577 in the instruction trace.

Further, VMProtect employs handler duplication. For example, the 449 instruction
handlers contain 12 instances performing 8-bit addition, 11 instances for each of addition
(for each flavor of 16-, 32-, 64-bit), nor (8-, 64-bit), left and right shift (32-, 64-bit);
amongst multiple others. If Syntia is able to learn one instance in each group, it is
safe to assume that it will successfully synthesize the full group, as supported by our
results.

Similarly, the execution trace is made up of all possible handlers and some of them occur
multiple times. Hence, if we correctly synthesize semantics for, e. g., a 64-bit addition,
this immediately yields semantics for 772 trace windows (6.2% of the full trace, 32.0%
of all arithmetic and logical trace windows in the trace). Equivalent reasoning applies
to 16-bit nor operations in our trace (3.6% of the full trace, 18.8% of all arithmetic
and logical trace windows). In total, our results reveal semantics for 19.7% of the
full execution trace (2, 482 out of 12, 577 trace windows). Manual analysis suggests
that the remaining trace semantics mostly consists of control-flow handling and stack
operations. These are especially used when switching from the native to the VM context
and amount for a large part of the execution trace.

On average, an individual instruction handler consists of 49 instructions. As VMProtect’s
VM is stack-based, binary arithmetic handlers pop two arguments from the stack and
push the result onto the stack. This tremendously eases identification of inputs and
outputs. Therefore, we mark memory operands as inputs and outputs and use the
configuration vector (1.5, 30000, 20, 0) for the synthesis. The sampling phase finished
in less than two minutes. Overall, the 1, 123 synthesis tasks completed in less than
an hour, which amounts to merely 3.7 seconds per task. In total, in our first run, we
automatically identified 190 out of 196 arithmetical and logical handlers (96.9%). The
remaining 6 handlers implement 8-bit divisions and shifts. Due to their representation
in x86 assembly code, Syntia needs to synthesize more complex expressions with nested
data type conversions. As the analysis is probabilistic in nature, we scheduled five more
runs which yielded 4 new handlers. Thus, we are able to automatically pinpoint 98.9%
of all arithmetic and logical instruction handlers in VMProtect.

3.6.3.2 Themida

The protection solution Themida supports three basic VM flavors, namely, Tiger, Fish,
and Dolphin. Each flavor can further be customized to use one of three obfuscation
levels, in increasing complexity: White, Red, and Black. We note that related work on
deobfuscation does not directly mention the exact configuration used for Themida. In
hopes to be comparable, we opted to use the default flavor Tiger, using level White, in
our evaluation. Unlike VMProtect, Tiger White uses an explicit handler table while
inlining the dispatcher routine; i. e., it follows the Threaded Code design principle
(cf. Section 3.2.1.1). Consequently, trace dissection again yields one trace window per
instruction handler. Even though the central handler table lists 1, 111 handlers, we
identified 106 unique trace windows along the concrete execution trace.
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Themida implements a register-based architecture and stores intermediate computa-
tions in one of many register available in the VM context. This, in turn, affects the
identification of input and output variables. While in the case of VMProtect, inputs
and outputs are directly taken from two slots on the stack, Themida has a significantly
higher number of potential inputs and outputs (i. e., all virtual registers in the VM
context, 10 to 15 in our case).

Tiger White supports handlers for addition, subtraction, multiplication, logical left
and right shift, bitwise operations and unary subtraction; each for different operand
widths. In contrast to VMProtect, handlers are neither duplicated nor do they occur
multiple times in the execution trace. Hence, the trace itself is much more compact,
spanning 2, 448 trace windows in total; roughly 5 times shorter than VMProtect’s. Still,
Themida’s handlers are much longer, with 258 instructions on average.

We ran the analysis using the configuration vector (1.8, 50000, 20, 0). Due to the higher
number of inputs, this configuration—in comparison to the previous section—sets a
much higher focus on exploration as indicated by higher values chosen for the first
two parameters. Sampling finished in one minute, whereas the synthesis phase took
around 166 minutes. At 1, 092 synthesis tasks, this amounts to roughly 9.1 seconds per
task. Eventually, we automatically learned the semantics of 34 out of 36 arithmetic
and logical handlers (94.4%). The remaining handlers (8-bit subtraction and logical or)
were not found as we were unable to complete the sampling phase due to crashes in
Unicorn engine.

3.6.4 ROP Gadget Analysis

We further evaluated Syntia on ROP gadgets, specifically, on four samples that were
thankfully provided by Debray [225]. They implement bubble sort, factorials, Fibonacci,
and matrix multiplication in ROP. To have a larger set of samples, we also used a
CTF challenge [174] that has been generated by the ROP compiler Q [196] and another
Fibonacci implementation that has been generated with ROPC [170].

Syntia automatically dissected the instruction traces into 156 individual gadgets. Since
many gadgets use exactly the same instructions, we unified them into 78 unique gadgets.
On average, a gadget consists of 3 instructions with 3 inputs and 2 outputs (register
and memory locations).

Due to the small numbers of inputs and synthesis tasks, we chose the configuration
vector (1.5, 100000, 50, 0) that sets a very strong focus on exploration while accepting a
higher running time. Especially, we experienced both effects for the maximum number
of MCTS iterations.

Syntia synthesized partial semantics for 97.4% of the gadgets in less than 14 minutes;
in total, we were successful in 163 out of the 178 (91.5%) synthesis tasks. Our synthesis
results include 58 assignments, 17 binary additions, 5 ternary additions, 4 unary minus,
4 binary subtractions, 4 register increments/decrements, 2 binary multiplications and 1
bitwise and. In addition, we found 68 stack pointer increments due to ret statements.
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The results do not include larger constants or operations such as ror as they are not
part of our grammar.

3.7 Discussion

In the following, we discuss different aspects of program synthesis for trace simplification
and MCTS-based program synthesis. Furthermore, we point out limitations of our
approach as well as future work.

Program Synthesis for Trace Simplification. Current research on deobfusca-
tion [66, 199, 224, 225] operates on instruction traces and uses a mixed approach
consisting of symbolic execution [224] and taint analysis [223]; two approaches that
require a precise analysis of the underlying code. While techniques exist that defeat
taint analysis [54, 191], recent work shows that symbolic execution can similarly be
attacked [35].

Program synthesis is an orthogonal approach that operates on a purely semantical level
as opposed to (binary) code analysis; it is oblivious to the underlying code constructs. As
a result, syntactical aspects of code complexity such as obfuscation or instruction count
do not influence program synthesis negatively. It is merely concerned with the complexity
of the code’s semantics. The only exception where code-level artifacts matter is the
generation of I/O samples; however, this can be realized with small overhead compared
to regular execution time using dynamic binary instrumentation [163, 172].

Commonly, instruction traces contain repetitions of unique trace windows that can
be caused by loops or repeated function calls to the same function. By synthesizing
these trace windows, the synthesized semantics pertain for all appearances on the
instruction trace; the more frequently these trace windows occur in the trace, the higher
the percentage of known semantics in the instruction trace. We stress how VM-based
obfuscation schemes do this to the extreme: a relatively small number of unique trace
windows are used over the whole trace.

In general, the synthesis results may not be precise semantics since we approximate
them based on I/O samples. If these do not reflect the full semantics, the synthesis
misses edge cases. For instance, we sometimes cannot distinguish between an arithmetic
and a logical right shift if the random inputs are no distinguishing inputs. We point out
that this is not necessarily a limitation, since a human analyst might still get valuable
insights from the approximated semantics.

As future work, we consider improving trace simplification by a stratified synthesis
approach [112]. The main idea is to incrementally synthesize larger parts of the
instruction trace based on previous results and successively approximate high-level
semantics of the entire trace. Further, we note that the work by Sharif et al. [199] is
complementary to our synthesis approach and would also allow us to identify control
flow. Likewise, extending the grammar by control-flow operations is another viable
approach to tackle this limitation.
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MCTS-based Program Synthesis. Compared to SMT-based program synthesis, we
obtain candidate solutions, even if the synthesizer does not find an exact result. This is
particularly beneficial for applications such as deobfuscation, since a human analyst can
sometimes infer the full semantics. We decided to utilize MCTS for program synthesis
since it has been proven very effective when operating on large search trees without
domain knowledge. However, our approach is not limited to MCTS, other stochastic
algorithms are also applicable.

Drawn from the observations made in Section 3.6, we infer that the MCTS approach
is much more effective with a configuration that focuses on exploration instead of
exploitation. The SA-UCT parameter ensures that paths with a higher reward are
explored in-depth in later stages of the algorithm. We still try to improve exploration
strategies, for instance with Nested Monte Carlo Tree Search [153] and Monte Carlo
Beam Search [55].

Limitations. In general, limits of program synthesis apply to our approach as well.
Non-determinism and point functions—Boolean functions that return 1 for exactly one
input out of a large input domain—cannot be synthesized practically. This also holds
for semantics that have strong confusion and diffusion properties, such as cryptographic
algorithms. These are inherently very complex, non-linear expressions with a deep
nesting level. Our approach is also limited by the choice of trace window boundaries;
ending a trace window in intermediate computation steps may produce formulas that
are not meaningful at all.

3.8 Related Work

We now review related work for program synthesis, Monte Carlo Tree Search and deob-
fuscation. Furthermore, we describe how our work fits into these research areas.

Program Synthesis. Gulwani et al. [104] introduced an SMT-based program synthesis
approach for loop-free programs that requires a logical specification of the desired
program behavior. Building on this, Jha et al. [123] replaced the specification with
an I/O oracle. Upon generation of multiple valid program candidates, they derive
distinguishing inputs that are used for subsequent oracle queries. They demonstrated
their use case by simplifying a string obfuscation routine of MyDoom. Godfroid and
Taly [91] used an SMT-based approach to learn the formal semantics of CPU instruction
sets; for this, they use the CPU as I/O oracle.

Schkufza et al. [193] proved that stochastic program synthesis often outperforms SMT-
based approaches. This is mostly due to the fact that common SMT-based approaches
effectively enumerate all programs of a given size or prove their non-existence. On
the other hand, stochastic approaches focus on promising parts of the search space
without searching exhaustively. Schkufza et al. use this technique for stochastic
superoptimization on the basis of their tool STOKE. Recent work by Heule et al. [112]
demonstrates a stratified approach to learn the semantics of the x86-64 instruction set,
based on STOKE. Their main idea is to re-use synthesis results to synthesize more
complex instructions in an iterative manner. To the best of our knowledge, STOKE is
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the only other stochastic synthesis tool that is able to synthesize low-level semantics.
By design, their code only produces Intel x86 code.

In our case, stochastic techniques have additional properties that are not achieved
by previous tools: we obtain partial results that are often already „close“ to a real
solution and might be helpful for a human analyst who tries to understand obfuscated
code. Furthermore, we can encode arbitrary complex function symbols in our grammar
(e. g., complex encoding schemes or hash functions); a characteristic that is not easily
reproduced by SMT-based approaches.

In the context of non-academic work, Rolles applied some of the above mentioned
SMT-based approaches to reverse engineering and deobfuscation [184]. Amongst others,
he learned obfuscation rules by adapting peephole superoptimization techniques [36]
and extracted metamorphic code using an oracle-guided approach. In his recent work,
he performs SMT-based shellcode synthesis [185].

Monte Carlo Tree Search. MCTS has been widely studied in the area of AI in
games [82, 153, 192, 207]. Ruijl et al. [187] combine Simulated Annealing and MCTS by
introducing SA-UCT for expression simplification. Lim and Yoo [146] describe an early
exploration on how MCTS can be used for program synthesis and note that it shows
comparable performance to genetic programming. We extend the research of MCTS-
based program synthesis by applying SA-UCT and introducing node pruning. For our
synthesis approach, we designed a context-free grammar that learns the semantics of
Intel x86 code.

Deobfuscation. Rolles provides an academic analysis of a VM-based obfuscator and
outlines a possible attack on such schemes in general [183]. He proposes using static
analysis to re-translate the VM’s bytecode back into native instructions. This, however,
requires minute analysis of each obfuscator and hence is time-consuming and prone to
minor modifications of the scheme. Kinder is also concerned with (static) analysis of
VMs [130]. Specifically, he lifts a location-sensitive analysis to be usable in presence of
virtualization-based obfuscation schemes. His work highlights how the execution trace
of a VM, while performing various computations, always exhibits a recurring set of
addresses. As seen in Section 3.6, our approach actually benefits from this side effect.
In contrast, Sharif et al. [199] analyze VMs in a dynamic manner and record execution
traces. In contrast to the work of Rolles, their goal is not to re-translate, but to directly
analyze the bytecode itself. Specifically, they aim to reconstruct parts of the underlying
code’s control flow from the bytecode. This approach is closest to our work as we are,
in turn, mostly concerned with arithmetic and logical semantics of a handler.

More recent results include work by Coogan et al. [66] as well as Yadegari et al. [225].
Both approaches seek to deobfuscate code based on execution traces by further making
use of symbolic execution and taint tracking. The former approach is focused on the
value flow to system calls to reduce a trace whereas Yadegari et al. propose a more
general approach and aim to produce fully deobfuscated code. However, to counteract
symbolic execution-based deobfuscation approaches, Banescu et al. propose novel
obfuscating transformations that specifically target their deficiencies [35]. For one, they
propose a construct akin to random opaque predicates [64] that deliberately explodes the
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number of paths through a function. A second technique preserves program behavior
of the obfuscated program for specific input invariants only, effectively increasing the
input domains and thus the search space for symbolic executors.

Guinet et al. present arybo, a framework to simplify MBA expressions [101]. In essence,
they perform bit-blasting and use a Boolean expression solver that tries to simplify
the expression symbolically. Eyrolles [81] describes a symbolic approach that uses
pattern matching. Furthermore, she suggests improvements of current MBA-obfuscated
implementations that impede these symbolic deobfuscation techniques [80]. To this
effect, we also argue that symbolic simplification is inherently limited by the complexity
of the input expression. However, we demonstrated that a synthesis-based approach
allows fine-tuned simplification, irrespective of syntactical complexity, while producing
approximate intermediate results.

3.9 Conclusion
With our prototype implementation of Syntia we have shown that program synthesis
can aid in deobfuscation of real-world obfuscated code. In general, our approach is
vastly different in nature compared to proposed deobfuscation techniques and hence
may succeed in scenarios where approaches requiring precise code semantics fail.
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Chapter 4

Input Structure Synthesis to Guide
Feedback-driven Fuzzing

4.1 Introduction

As the amount of software impacting the (digital) life of nearly every citizen grows,
effective and efficient testing mechanisms for software become increasingly important.
The publication of the fuzzing framework AFL [231] and its success at uncovering a
huge number of bugs in highly relevant software has spawned a large body of research
on effective feedback-based fuzzing. AFL and its derivatives have largely conquered
automated, dynamic software testing and are used to uncover new security issues and
bugs every day. However, while great progress has been achieved in the field of fuzzing,
many hard cases still require manual user interaction to generate satisfying test coverage.
To make fuzzing available to more programmers and thus scale it to more and more
target programs, the amount of expert knowledge that is required to effectively fuzz
should be reduced to a minimum. Therefore, it is an important goal for fuzzing research
to develop fuzzing techniques that require less user interaction and, in particular, less
domain knowledge to enable more automated software testing.

Structured Input Languages. One common challenge for current fuzzing techniques
are programs which process highly structured input languages such as interpreters,
compilers, text-based network protocols or markup languages. Typically, such inputs
are consumed by the program in two stages: parsing and semantic analysis. If parsing
of the input fails, deeper parts of the target program—containing the actual application
logic—fail to execute; hence, bugs hidden „deep“ in the code cannot be reached. Even
advanced feedback fuzzers—such as AFL—are typically unable to produce diverse sets of
syntactically valid inputs. This leads to an imbalance, as these programs are part of the
most relevant attack surface in practice, yet are currently unable to be fuzzed effectively.
A prominent example are browsers, as they parse a multitude of highly-structured
inputs, ranging from XML or CSS to JavaScript and SQL queries.

Previous approaches to address this problem are typically based on manually provided
grammars or seed corpora [33, 78, 167, 186]. On the downside, such methods require
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human experts to (often manually) specify the grammar or suitable seed corpora, which
becomes next to impossible for applications with undocumented or proprietary input
specifications. An orthogonal line of work tries to utilize advanced program analysis
techniques to automatically infer grammars [37, 38, 98]. Typically performed as a
pre-processing step, such methods are used for generating a grammar that guides the
fuzzing process. However, since this grammar is treated as immutable, no additional
learning takes place during the actual fuzzing run.

Our Approach. In this chapter, we present a novel, fully automated method to fuzz
programs with a highly structured input language, without the need for any human
expert or domain knowledge. Our approach is based on two key observations: First, we
can use code coverage feedback to automatically infer structural properties of the input
language. Second, the precise and „correct“ grammars generated by previous approaches
are actually unnecessary in practice: since fuzzers have the virtue of high test case
throughput, they can deal with a significant amount of noise and imprecision. In fact,
in some programs (such as Boolector) with a rather diverse set of input languages,
the additional noise even benefits the fuzz testing. In a similar vein, there are often
program paths which can only be accessed by inputs outside of the formal specifications,
e. g., due to incomplete or imprecise implementations or error handling code.

Instead of using a pre-processing step, our technique is directly integrated in the fuzzing
process itself. We propose a set of generalizations and mutations that resemble the
inner workings of a grammar-based fuzzer, without the need for an explicit grammar.
Our generalization algorithm analyzes each newly found input and tries to identify
substrings of the input which can be replaced or reused in other positions. Based on
this information, the mutation operators recombine fragments from existing inputs.
Overall, this results in synthesizing new, structured inputs without prior knowledge of
the underlying specification.

We have implemented a prototype of the proposed approach in a tool called Grimoire1.
Grimoire does not need any specification of the input language and operates in an
automated manner without requiring human assistance; in particular, without the need
for a format specification or seed corpus. Since our techniques make no assumption
about the program or its environment behavior, Grimoire can be easily applied to
closed-source targets as well.

To demonstrate the practical feasibility of our approach, we perform a series of experi-
ments. In a first step, we select a diverse set of programs for a comparative evaluation:
we evaluate Grimoire against other fuzzers on four scripting language interpreters
(mruby, PHP, Lua and JavaScriptCore), a compiler (TCC), an assembler (NASM), a
database (SQLite), a parser (libxml) and an SMT solver (Boolector). Demonstrating
that our approach can be applied in many different scenarios without requiring any kind
of expert knowledge, such as an input specification. The evaluation results show that
our approach outperforms all existing coverage-guided fuzzers; in the case of Boolector,
Grimoire finds up to 87% more coverage than the baseline (Redqueen). Second, we

1A grimoire is a magical book that recombines magical elements to formulas. Furthermore, it has
the same word stem as the Old French word for grammar—namely, gramaire.
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evaluate Grimoire against state-of-the-art grammar-based fuzzers. We observe that in
situations where an input specification is available, it is advisable to use Grimoire in
addition to a grammar fuzzer to further increase the test coverage found by grammar
fuzzers. Third, we evaluate Grimoire against current state-of-the-art approaches that
use automatically inferred grammars for fuzzing and found that we can significantly
outperform such approaches. Overall, Grimoire found 19 distinct memory corruption
bugs that we manually verified. We responsibly disclosed all of them to the vendors and
obtained 11 CVEs. During our evaluation, the next best fuzzer only found 5 of these
bugs. In fact, Grimoire found more bugs than all five other fuzzers combined.

Contributions. In summary, we make the following contributions:

• We present the design, implementation and evaluation of Grimoire, an approach
to fully automatically fuzz highly structured formats with no human interaction.

• We show that even though Grimoire is a binary-only fuzzer that needs no seeds
or grammar as input, it still outperforms many fuzzers that make significantly
stronger assumptions (e. g., access to seeds, grammar specifications and source
code).

• We found and reported multiple bugs in various common projects such as PHP,
gnuplot and NASM.

4.2 Challenges in Fuzzing Structured Languages

Fuzzing has proven extremely useful as a tool for uncovering bugs in software. Thus,
a multitude of corresponding methods has emerged over the last decades. In this
chapter, we discuss various existing approaches and their drawbacks. Afterward, we
combine advantages of different techniques to derive novel methods for fuzzing structured
languages.

4.2.1 Black-box Fuzzing

Many fuzzers (so-called black-box fuzzers) do not know any internals of the target
application. They generate a random stream of malformed inputs in the hope of causing
a fault in the target application. Over time, many such fuzzer were developed. To
name just a few, radamsa [111], PEACH [78], Sulley [167] and zzuf [115] are all
well-known examples from this category.

With such a diverse set of fuzzers, widely different strategies are employed to generate
a stream of inputs. We further divide black-box fuzzers into two subcategories based
on the strategies used, namely structured fuzzers and mutational fuzzers.

Structured fuzzers require a specification to create (mostly) valid inputs [169, 211]. This
has the advantage that even a „blind“ black-box fuzzer can generate very good test
coverage and explore almost all code paths. However, the quality of the testing process
depends entirely on the quality of the specification, while building a good specification
can be extremely time-consuming.
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Mutational fuzzers assume a set of interesting inputs (seeds) that are iteratively mutated.
For example, fuzzers such as radamsa [111] flip bits, repeat random byte sequences
or add a random value to an arbitrary offset. The effectiveness of mutational fuzzing
depends entirely on a well-chosen set of seeds. Due to the nature of these mutations,
only tiny changes are applied to inputs. Consequently, only bugs „close“ to the seed
inputs will be uncovered.

4.2.2 Gray-box Fuzzing

While black-box fuzzers were already highly effective at finding bugs, the introduction
of AFL [231] caused a downright explosion in research on fuzzing tools. AFL was the
first well-known mutational gray-box fuzzer or coverage-guided fuzzer that uses code
coverage information for each generated test case to guide the fuzzing process. Test
cases that trigger new coverage are used as seeds for further mutations. Hence, the
fuzzer is able to explore the target application in much more detail than a black-box
mutation-based fuzzer would be able to. As interesting test cases are stored, mutations
can accumulate and the fuzzer is able to find bugs that differ greatly from the original
inputs.

The seeds supplied to AFL are stored in a queue of inputs used for testing. AFL itself
uses a large loop that (1) picks an input from the queue, (2) mutates it and (3) runs the
target application with the mutated input. If executing the mutated input yields new
test coverage, the mutated input is stored in the queue, otherwise discarded. Finally,
the next input in the queue is processed.

Similar approaches have been explored even before the publication of AFL; however,
these approaches were usually rather slow [79]. The success of AFL was due to its
highly efficient implementation. One of the biggest problems for fuzzers was effectively
computing and comparing test coverage. AFL introduced a very fast approximation
scheme based on compile-time instrumentations. Later, the same scheme was adopted
to use other instrumentation techniques such as dynamic binary instrumentation [142]
or Intel-PT [194].

Coverage Calculation. To obtain coverage feedback, AFL uses a compiler pass that
inserts instrumentations at the beginning of every basic block. This instrumentation
calculates a 16-bit ID for each edge in the control-low graph of the target program. To
obtain such an ID efficiently, the compiler pass assigns a random ID to each basic block.
Then, the instrumentation calculates

edge_id := (last_bb_id ∗ 2)⊕ bb_id (4.1)

and sets last_bb_id to the current basic block ID. The multiplication by two serves to
distinguish self-loops (all loops with a single basic block would use the edge ID zero
otherwise) and the direction of the control-flow transfer.

In the last step, the instrumentation uses the edge ID as an index into the so-called
„shared map“ and increments the corresponding byte in this map. After the execution
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is finished, the shared map contains a representation of the edge coverage of the
run [233].

Coverage Comparison. After AFL obtained this array of edge counts for a given test
case, it compares the resulting coverage to the coverage one observed by all previous
test cases. To avoid individually comparing test cases, it uses a global bitmap that
stores all the coverage that has been previously observed. If any entry in the shared
map contains a value higher than that in the global map, the input triggered some new
edge coverage and is stored in the queue. The corresponding entry in the global map is
also updated to reflect that this new value has been observed.

To be more precise, AFL does not compare the values directly. Instead, it applies a
process called bucketing : Each byte in the shared map is reduced to a byte where only
a single bit is set. Then, to compare the global map against the shared map, AFL only
checks whether the shared map contains a bit that is still zero in the global map. This
operation can be performed very efficiently for eight bytes at a time.

We distinguish between inputs that triggered an edge that has never been seen before
(e. g., where the value in the global map was zero) and those that only encountered a
new number of loop iterations for the given edge. When an entry is encountered the
first time, we say „the input found a new byte“; otherwise, we say „the input only found
new bits“.

Example 4.1. Assume the target contains an edge from a basic block with ID 0x0010
and another basic block with ID 0x000a. The edge ID is calculated—according to
Equation 4.1—as 0x0010 ∗ 2⊕ 0x000a = 0x002a. This edge is executed ten times. After
execution, the shared map byte at offset 0x002a contains the value 10. The bucketing
process assigns the bucket 8 (0b1000). Then, we check whether the fourth bit in the
global map entry at offset 0x002a is set. If not, we store the input in the queue.

Based on the design of AFL, various other fuzzers were built that try to overcome
common challenges in fuzzing. Consider a four-byte header is used to identify a file
format or message. A fuzzer that is only guided by code coverage would find it very
difficult to guess the correct header. To overcome similar scenarios, different approaches
apply a wide variety of techniques. For example, Redqueen [34] only uses breakpoints
to include values observed during execution in the feedback. Angora [59] makes
use of taint tracking and gradient inference to tackle the same challenges. Lastly,
tools like QSym [230] and T-Fuzz [171] rely on symbolic execution to overcome hard
constraints.

While these approaches are effective at solving certain constraints, they are woefully
unprepared to deal with the challenges that are posed by highly structured input
languages. In such cases, the „interesting“ program logic is only reached after the input
has been parsed. Consequently, a single bit flip in the wrong position will cause the
target to discard the input; thus, mutations need to maintain the syntactical validity
of the input. While fuzzers like AFL occasionally manage to generate syntactically
valid inputs, they cannot systematically explore the set of syntactically valid inputs.
One way to overcome this problem is by using a format specification during the fuzzing
process.

51



4.2.3 Structured Gray-box Fuzzing

The simple bitwise mutations employed by AFL and similar mutational fuzzers are a
poor fit for many formats with a large set of syntactical constraints. If these constraints
are checked before the interesting part of the program logic is executed, almost no input
will manage to exercise the code we are interested in. Examples for such programs are
ample, since nearly all kinds of interpreters, compilers, network protocols and text-based
formats fall into this category. In fact, it is not uncommon that a blind fuzzer with
an input specification is able to cover more interesting code than AFL with access to
coverage guidance. Recently, multiple projects combined the best of both worlds: use of
an input specification and coverage feedback. This way, fuzzers like Nautilus [33] and
AFLSmart [173] are able to produce a much more diverse set of syntactically valid
inputs.

However, while they can explore the target application’s input space much more
thoroughly, they require a specification for the input format. Hence, the approach
sometimes demands a significant upfront effort to obtain such a specification, severely
limiting the usefulness as a general-purpose tool. Additionally, if the specification lacks
some aspects of the input format, the fuzzer will not be able to explore the corresponding
area of the target.

4.2.4 Grammar Inference

To overcome the need for a preexisting specification, some approaches were developed
that aim to learn the input specification (typically in the form of a context-free grammar)
directly from the program itself. For example, Glade [38] assumes a black-box oracle
that tells whether an input is syntactically correct or not. Using this oracle, Glade
first tries to generalize existing inputs to regular expressions. From these, it infers
recursive replacement rules that form a context-free grammar.

This approach has some serious drawbacks. First of all, it requires both a modified target
program serving as a syntax oracle and a set of syntactically valid inputs. Secondly,
the approach often takes multiple hours and—as our evaluation shows—the resulting
grammars are typically an inferior fit for fuzzing purposes.

To avoid modifying the target application, other approaches employ the unmodified
program. In particular, Autogram [118] applies taint tracking to learn which parts
of the input are used at which location in the program. Based on these results, it
generalizes a grammar. Pygmalion [98] uses symbolic execution for similar purposes.
However, both approaches are limited to recursive descent parsers and also require good
seeds.

4.2.5 Shortcomings of Existing Fuzzers

In summary, using fuzzing to test highly structured input languages is not an easy
task; all discussed approaches dealing with highly structured formats have some serious
drawbacks. In all cases, a significant amount of human effort is required: either to
acquire an input specification, modify the target to obtain a syntax oracle or to gather
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good seed cases. Also, these approaches—especially Autogram and Pygmalion—
would be very hard to adapt to binary targets and are unable to infer the grammars for
parsers generated by tools such as GNU Bison [84] or Yacc [124].

In this chapter, we develop an approach that combines grammar inference with fuzzing.
Great care is taken to ensure that the approach seamlessly integrates into the normal
fuzzing process and can easily be adapted to other state-of-the-art feedback fuzzers.
In particular, our approach neither requires any specific instrumentation beyond what
AFL-style fuzzers already provide nor any form of human input or good seeds.

4.3 Design
Based on the challenges identified above, we now introduce the design of Grimoire, a
fully automated approach that synthesizes the target’s structured input language during
fuzzing. Furthermore, we present structure-aware mutations that cross significant gaps
in the program space. Note that none of the limitations discudded before applies to our
approach. To emphasize, our design does not require any previous information about
the input structure. Instead, we learn an ad-hoc specification based on the program
semantics and use it for coverage-guided fuzzing.

We first provide a high-level overview of Grimoire, followed by a detailed description.
Grimoire is based on identifying and recombining fragments in inputs that trigger
new code coverage during a normal fuzzing session. It is implemented as an additional
fuzzing stage on top of a coverage-guided fuzzer. In this stage, we strip every new input
(that is found by the fuzzer and produced new coverage) by replacing those parts of the
input that can be modified or replaced without affecting the input’s new coverage by
the symbol �. This can be understood as a generalization, in which we reduce inputs
to the fragments that trigger new coverage, while maintaining information about gaps
or candidate positions (denoted by �). These gaps are later used to splice in fragments
from other inputs.

Example 4.2. Consider the input „if(x>1) then x=3 end“ and assume it was the
first input to trigger the coverage for a syntactically correct if-statement as well as for
„x>1“. We can delete the substring „x=3“ without affecting the interesting new coverage
since the if-statement remains syntactically correct. Additionally, the space between the
condition and the „then“ is not mandatory. Therefore, we obtain the generalized input
„if(x>1)�then �end“.

After a set of inputs was successfully generalized, fragments from the generalized inputs
are recombined to produce new candidate inputs. We incorporate various different
strategies to combine existing fragments, learned tokens (a special form of substrings)
and strings from the binary in an automated manner.

Example 4.3. Assume we obtained the following generalized inputs: „if(x>1)�then
�end“ and „�x=�y+�“. We can use this information in many ways to generate plausible
recombinations. For example, starting with the input „if(x>1)�then �end“, we can
replace the second gap with the second input, obtaining „if(x>1)�then �x=�y+�end“.
Afterward, we choose the slice „�y+�“ from the second input and splice it into the
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fourth gap and obtain „if(x>1)�then �x=�y+�y+�end“. In a last step, we replace all
remaining gaps by an empty string. Thus, the final input is „if(x>1)then x=y+y+end“.

One could think of our approach as a context-free grammar with a single non-terminal
input � and all fragments of generalized inputs as production rules. Using these loose,
grammar-like recombination methods in combination with feedback-driven fuzzing, we
are able to automatically learn interesting structures.

4.3.1 Input Generalization

We try to generalize inputs that produced new coverage (e. g., inputs that introduced
new bytes to the bitmap, cf. Section 4.2.2). The generalization process (Algorithm 3)
tries to identify parts of the input that are irrelevant and fragments that caused new
coverage. In a first step, we use a set of rules to obtain fragment boundaries (Line 3).
Consecutively, we remove individual fragments (Line 4). After each step, we check
if the reduced input still triggers the same new coverage bytes as the original input
(Line 5). If this is the case, we replace the fragment that was removed by a � and keep
the reduced input (Line 6).

Algorithm 3: Generalizing an input through fragment identification.
Data: input is the input to generalize, new_bytes are the new bytes of the

input, splitting_rule defines how to split an input
Result: A generalized version of input

1 start ← 0
2 while start < input.length() do
3 end ← find_next_boundary(input, splitting_rule)
4 candidate ← remove_substring(input, start, end)
5 if get_new_bytes(candidate) == new_bytes then
6 input ← replace_by_gap(input, start, end)

7 start ← end

8 input ← merge_adjacent_gaps(input)

Example 4.4. Consider input „pprint ’aaaa’“ triggers the new bytes 20 and 33
because of the pprint statement. Furthermore, assume that we use a rule that splits
inputs into non-overlapping chunks of length two. Then, we obtain the chunks „pp“, „ri“,
„nt“, „ ’“, „aa“, „aa“ and „’“. If we remove any of the first four chunks, the modified
input will not trigger the same new bytes since we corrupted the pprint statement.
However, if we remove the fifth or sixth chunk, we still trigger the bytes 20 and 33 since
the pprint statement remains valid. Therefore, we reduce the input to „pprint ’��’“.
As we have two adjacent �, we merge them into one. The generalized input is „pprint
’�’“.

To generalize an input as much as possible, we use several fragmentation strategies
for which we apply Algorithm 3 repeatedly. First, we split the input into overlapping
chunks of size 256, 128, 64, 32, 2 and 1 to remove large uninteresting parts as early as
possible. Afterward, we dissect at different separators such as ‘.’, ‘;’, ‘,’, ‘\n’, ‘\r’,
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‘\t’, ‘#’ and ‘ ’. As a consequence, we can remove one or more statements in code,
comments and other parts that did not cause the input’s new coverage. Finally, we
split at different kinds of brackets and quotation marks. These fragments can help to
generalize constructs such as function parameters or nested expressions. In detail, we
split in between of ‘()’, ‘[]’, ‘{}’, ‘<>’ as well as single and double quotes. To guess
different nesting levels in between these pairs of opening/closing characters, we extend
Algorithm 3 as follows: If the current index start matches an opening character, we
search the furthermost matching closing character, create a candidate by removing
the substring in between and check if it triggers the same new coverage. We iteratively
do this by choosing the next furthermost closing character—effectively shrinking the
fragment size—until we find a substring that can be removed without changing the
new_bytes or until we reach the index start. In doing so, we are able to remove
the largest matching fragments from the input that are irrelevant to the input’s new
coverage.

Since we want to recombine (generalized) inputs to find new coverage—as we describe
in the following section—we store the original input as well as its generalization.
Furthermore, we split the generalized input at every � and store the substrings (tokens)
in a set; these tokens often are syntactically interesting fragments of the structured
input language.

Example 4.5. We map „if(x>1) then x=3 end“ to its generalization „if(x>1)�then
�end“. In addition, we extract the tokens „if(x>1)“, „then “ and „end“. For the gen-
eralized input „�x=�y+�“, we remember the tokens „x=“ and „y+“.

4.3.2 Input Mutation

Grimoire builds upon knowledge obtained from the generalization stage to generate
inputs that have good chances of finding new coverage. For this, it recombines (fragments
of) generalized inputs, tokens and strings (stored in a dictionary) that are automatically
obtained from the data section of the target’s binary. On a high level, we can divide
our mutations into three standalone operations: input extension, recursive replacement
and string replacement.
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Figure 4.1: A high-level overview of our mutations. Given an input, we apply various
mutations on its generalized and original form. Each mutation then feeds mutated
variants of the input to the fuzzer’s execution engine.
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Given the current input from the fuzzing queue, we add these mutations to the so-called
havoc phase [34] as described in Algorithm 4. First, we use Redqueen’s havoc_amount to
determine—based on the input’s performance—how often we should apply the following
mutations (in general, between 512 and 1024 times). First, if the input triggered new
bytes in the bitmap, we take its generalized form and apply the structure-aware muta-
tions input_extension and recursive_replacement. Afterward, we take the original
input string (accessed by input.content()) and apply the string_replacement mu-
tation. This process is illustrated in Figure 4.1.

Algorithm 4: High-level overview of the mutations introduced in Grimoire.
Data: input is the current input in the queue, generalized is the set of all

previously generalized inputs, tokens and strings from the dictionary,
strings is the provided dictionary obtained from the binary

1 content ← input.content()
2 n ← havoc_amount(input.performance())
3 for i← 0 to n do
4 if input.is_generalized() then
5 input_extension(input, generalized)
6 recursive_replacement(input, generalized)

7 string_replacement(content, strings)

Before we describe our mutations in detail, we explain two functions that all mu-
tations have in common—random_generalized and send_to_fuzzer. The function
random_generalized takes as input a set of all previously generalized inputs, tokens
and strings from the dictionary and returns—based on random coin flips—a random
(slice of a ) generalized input, token or string. In case we pick an input slice, we select
a substring between two arbitrary � in a generalized input. This is illustrated in
Algorithm 5. The other function, send_to_fuzzer, implies that the fuzzer executes the
target application with the mutated input. It expects concrete inputs. Thus, mutations
working on generalized inputs first replace all remaining � by an empty string.

Algorithm 5: Random selection of a generalized input, slice, token or string.
Data: generalized is the set of all previously generalized inputs, tokens and

strings from the dictionary
Result: rand is a random generalized input, slice token or string

1 if random_coin() then
2 if random_coin() then
3 rand ← random_slice(generalized)

4 else
5 rand ← random_token_or_string(generalized)

6 else
7 rand ← random_generalized_input(generalized)
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4.3.2.1 Input Extension

The input extension mutation is inspired by the observation that—in highly struc-
tured input languages—often inputs are chains of syntactically well-formed statements.
Therefore, we extend an generalized input by placing another randomly chosen general-
ized input, slice, token or string before and after the given one. This is described in
Algorithm 6.

Algorithm 6: Overview of the input extension mutation.
Data: input is the current generalized input, generalized is the set of all

previously generalized inputs, tokens and strings from the dictionary
1 rand ← random_generalized(generalized_inputs)
2 send_to_fuzzer(concat(input.content(), rand.content()))
3 send_to_fuzzer(concat(rand.content(), input.content()))

Example 4.6. Assume that the current input is „pprint ’aaaa’“ and its general-
ization is „pprint ’�’“. Furthermore, assume that we randomly choose a previous
generalization „�x=�y+�“. Then, we concretize their generalizations to „pprint ’$$’“
and „x=y+“ by replacing remaining gaps with an empty string. Afterward, we concatenate
them and obtain „pprint ’$$’x=y+“ and „x=y+pprint ’$$’“.

4.3.2.2 Recursive Replacement

The recursive replacement mutation recombines knowledge about the structured input
language—that was obtained earlier in the fuzzing run—in a grammar-like manner. As
illustrated in Algorithm 7, given a generalized input, we extend its beginning and end
by �—if not yet present—such that we always can place other data before or behind the
input. Afterward, we randomly select n ∈ {2, 4, 8, 16, 32, 64} and perform the following
operations n times: First, we randomly select another generalized input, input slice,
token or string. Then, we call replace_random_gap which replaces an arbitrary � in
the first generalized input by the chosen element. Furthermore, we enforce � before and
after the replacement such that these � can be subject to further replacements. Finally,
we concretize the mutated input and send it to the fuzzer. The recursive replacement
mutator has a (comparatively) high likelihood of producing new structurally interesting
inputs compared to mutations used by current coverage-guided fuzzers.

Algorithm 7: Overview of the recursive replacement mutation.
Data: input is the current generalized input, generalized is the set of all

previously generalized inputs, tokens and strings from the dictionary
1 input ← pad_with_gaps(input)
2 for i← 0 to random_power_of_two() do
3 rand ← random_generalized(generalized_inputs)
4 input ← replace_random_gap(input, rand)

5 send_to_fuzzer(input.content())
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Example 4.7. Assume that the current input is „pprint ’aaaa’“. We take its gen-
eralization „pprint ’�’“ and extend it to „�pprint ’�’�“. Furthermore, assume
that we already generalized the inputs „if(x>1)�then �end“ and „�x=�y+�“. In
a first mutation, we choose to replace the first � with the slice „if(x>1)�“. We ex-
tend the slice to „�if(x>1)�“ and obtain „�if(x>1)�pprint ’�’�“. Afterward,
we choose to replace the third � with „�x=�y+�“ and obtain „�if(x>1)�pprint
’�x=�y+�’�“. In a final step, we replace the remaining � with an empty string and
obtain „if(x>1)pprint ’x=y+’“.

4.3.2.3 String Replacement

Keywords are important elements of structured input languages; changing a single
keyword in an input can lead to completely different behavior. Grimoire’s string
replacement mutation performs different forms of replacements, as described in Algo-
rithm 8. Given an input, it locates all substrings in the input that match strings from
the obtained dictionary and chooses one randomly. Grimoire first selects a random
occurrence of the matching substring and replaces it with a random string. In a second
step, it replaces all occurrences of the substring with the same random string. Finally,
the mutation sends both mutated inputs to the fuzzer. As an example, this mutation
can be helpful to discover different methods of the same object by replacing a valid
method call with different alternatives. Also, changing all occurrences of a substring
allows us to perform more syntactically correct mutations, such as renaming of variables
in the input.

Example 4.8. Assume the „if(x>1)pprint ’x=y+’“ and that the strings „if “, „while“,
„key“, „pprint“, „eval“, „+“, „=“ and „–“ are in the dictionary. Thus, the string replace-
ment mutation can generate inputs such as „while(x>1)pprint ’x=y+’“, „if(x>1)eval
’x+y+’“ or „if(x>1)pprint ’x=y-’“. Furthermore, assume that the string „x“ is also in
the dictionary. Then, the string replacement mutation can replace all occurrences of the
variable „x“ in „if(x>1)pprint ’x=y+’“ and obtain „if(key>1)pprint ’key=y+’“.

Algorithm 8: Overview of the string replacement mutation.
Data: input is the input string, strings is the provided dictionary obtained

from the binary
1 sub ← find_random_substring(input, strings)
2 if sub then
3 rand ← random_string(strings)
4 data ← replace_random_instance(input, sub, rand)
5 send_to_fuzzer(data)
6 data ← replace_all_instances(input, sub, and)
7 send_to_fuzzer(data)
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4.4 Implementation
To evaluate the algorithms introduced in this chapter, we built a prototype implementa-
tion of our design. Our implementation, called Grimoire, is based on Redqueen’s [34]
source code. This allows us to implement our techniques within a state-of-the-art fuzzing
framework. Redqueen is applicable to both open and closed source targets running
in user or kernel space, thus enabling us to target a wide variety of programs. While
Redqueen is entirely focused on solving magic bytes and similar constructs which are
local in nature (i. e., require only few bytes to change), Grimoire assumes that this
kind of constraints can be solved by the underlying fuzzer. It uses global mutations
(that change large parts of the input) based on the examples that the underlying fuzzer
finds. Since our technique is merely based on common techniques implemented in
coverage-guided fuzzers—for instance, access to the execution bitmap—it would be
a feasible engineering task to adapt our approach to other current fuzzers, such as
AFL.

More precisely, Grimoire is implemented as a set of patches to Redqueen. After
finding new inputs, we apply the generalization instead of the minimization algorithm
that was used by AFL and Redqueen. Additionally, we extended the havoc stage
by structure-aware mutations as explained in Section 4.3. To prevent Grimoire from
spending too much time in the generalization phase, we set a user-configurable upper
bound; inputs whose length exceeds this bound are not be generalized. Per default, it
is set to 16384 bytes. Overall, about 500 lines were written to implement the proposed
algorithms.

To support reproducibility of our approach, we open source the fuzzing logic, especially
the implementation of Grimoire as well as its interaction with Redqueen at https:
//github.com/RUB-SysSec/grimoire.

4.5 Experimental Evaluation
We evaluate our prototype implementation Grimoire to answer the following research
questions.

RQ1 How does Grimoire compare to other state-of-the-art bug finding tools?

RQ2 Is our approach useful even when proper grammars are available?

RQ3 How does our approach improve the performance on targets that require highly
structured inputs?

RQ4 How does our approach perform compared to other grammar inference techniques
for the purpose of fuzzing?

RQ5 How do our mutators impact fuzzing performance?

RQ6 Can Grimoire identify new bugs in real-world applications?

To answer these questions, we perform three individual experiments. First, we evaluate
the coverage produced by various fuzzers on a set of real-world target programs. In the
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second experiment, we analyze how our techniques can be combined with grammar-
based fuzzers for mutual improvements. Finally, we use Grimoire to uncover a set of
vulnerabilities in real-world target applications.

4.5.1 Measurement Setup

All experiments are performed on an Ubuntu Server 16.04.2 LTS with an Intel i7-6700
processor with 4 cores and 24 GiB of RAM. Each tool is evaluated over 12 runs for 48
hours to obtain statistically meaningful results. In addition to other statistics, we also
measure the effect size by calculating the difference in the median of the number of
basic blocks found in each run. Additionally, we perform a Mann Whitney U test (using
scipy 1.0 [125]) and report the resulting p-values. All experiments are performed with
the tool being pinned to a dedicated CPU in single-threaded mode. Tools other than
Grimoire and Redqueen require source-code access; we use the fast clang-based
instrumentation in these cases. Additionally, to ensure a fair evaluation, we provide
each fuzzer with a dictionary containing the strings found inside of the target binary. In
all cases, except Nautilus (which crashed on larger bitmaps), we increase the bitmap
size from 216 to 219. This is necessary since we observe more collisions in the global
coverage map for large targets which causes the fuzzer to discard new coverage. For
example, in SQLite (1.9 MiB), 14% of the global coverage map entries collide [233].
Since we deal with even larger binaries such as PHP which is nearly 19 MiB, the bitmap
fills up quickly. Based on our empirical evaluation, we observed that 219 is the smallest
sufficient size that works for all of our target binaries.

Furthermore, we disable the so-called deterministic stage [233]. This is motivated by
the observation that these deterministic mutations are not suited to find new coverage
considering the nature of highly structured inputs. Finally—if not stated otherwise—we
use the same uninformed seed that the authors of Redqueen used for their experiments:
"ABC. . . XYZabc. . . xyz012. . . 789!"$. . . ~+*".

As noted by Aschermann et al. [34], there are various definitions of a basic block.
Fuzzers such as AFL change the number of basic blocks in a program. Thus, to enable
a fair comparison in our experiments, we measure the coverage produced by each fuzzer
on the same uninstrumented binary. Therefore, the numbers of basic blocks found and
reported in this chapter might differ from other papers. However, they are consistent
within all of our experiments.

For our experiments, we select a diverse set of target programs. We use four script-
ing language interpreters (mruby-1.4.1 [155], php-7.3.0 [210], lua-5.3.5 [120] and
JavaScriptCore, commit „f1312“ [32]) a compiler (tcc-0.9.27 [40]), an assembler
(nasm-2.14.02 [209]), a database (sqlite-3.25 [114]), a parser (libxml-2.9.8 [212])
and an SMT solver (boolector-3.0.1 [165]). We select these four scripting language
interpreters so that we can directly compare the results to Nautilus. Note that our
choice of targets is additionally governed by architectural limitations of Redqueen
which Grimoire is based on. Redqueen uses Virtual Machine Introspection (VMI) to
transfer the target binary—including all of its dependencies—into the Virtual Machine
(VM). The maximum transfer size using VMI in Redqueen is set to 64 MiB. Programs
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such as Python [175], GCC [90], Clang [149], V8 [97] and SpiderMonkey [160] exceed
our VMI limitation; thus, we can not evaluate them. We select an alternative set of
target binaries that are large enough but at the same time do not exceed our 64 MiB
transfer size limit. Hence, we choose JavaScriptCore over V8 and SpiderMonkey,
mruby over ruby and TCC over GCC or Clang. Finally, we tried to evaluate Grimoire
with ChakraCore [157]. However, ChakraCore fails to start inside of the Redqueen
Virtual Machine for unknown reasons. Still, Grimoire performs well on large targets
such as JavaScriptCore and PHP.

4.5.2 State-of-the-Art Bug Finding Tools

To answer RQ 1, we perform 12 runs on eight targets using Grimoire and four state-
of-the-art bug finding tools. We choose AFL (version 2.52b) because it is a well-known
fuzzer and a good baseline for our evaluation. We select QSym (commit „6f00c3d“)
and Angora (commit „6ff81c6“), two state-of-the-art hybrid fuzzers which employ
different program analysis techniques, namely symbolic execution and taint tracking.
Finally, we choose Redqueen as a state-of-the-art coverage-guided fuzzer, which is
also the baseline of Grimoire. As a consequence, we are able to directly observe the
improvements of our method. Note that we could not compile libxml for Angora
instrumentation. Therefore, Angora is missing in the libxml plot.

Table 4.1: Confirmatory data analysis of our experiments. We compare the coverage
produced by Grimoire against the best alternative. The effect size is the difference of
the medians in basic blocks. In most experiments, the effect size is relevant and the
changes are highly significant: it is typically multiple orders of magnitude smaller than
the usual bound of p < 5.0E-02 (bold).

Target Best
Alternative

Effect Size
(∆ = Ā− B̄)

Effect Size
in % of Best

p-
value

mruby Angora 3685 19.3% 1.8E-05
TCC Redqueen 1952 22.6% 7.8E-05
PHP Redqueen 11238 31.6% 1.8E-05
Boolector AFL 7671 43.9% 1.8E-05
Lua Angora -478 -8.2% 4.5E-04
libxml AFL 308 3.4% 1.8E-02
SQLite Angora 4846 26.8% 1.8E-05
NASM Angora 272 2.9% 9.7E-02

The results of our coverage measurements are shown in Figure 4.2. As we can see,
in all cases Grimoire provides a significant advantage over the baseline (unmodified
Redqueen). Surprisingly, in most cases, neither Angora, Redqueen, nor QSym
seem to have a significant edge over plain AFL. This can be explained by the fact
that Redqueen and Angora mostly aim to overcome certain „magic byte“ fuzzing
roadblocks. Similarly, QSym is also effective to solve these roadblocks. Since we provide
a dictionary with strings from the target binary to each fuzzer, these roadblocks become
much less common. Thus, the techniques introduced in Angora, Redqueen and
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Figure 4.2: The coverage (in basic blocks) produced by various tools over 12 runs for
48h on various targets. Displayed are the median and the 66.7% intervals.
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QSym are less relevant given the seeds provided to the fuzzers. However, in the case of
TCC, we can observe that providing the strings dictionary does not help AFL. Therefore,
we believe that Angora and Redqueen find strings that are not part of the dictionary
and thus outperform AFL.

Target Best Coverage (#BBS / %) Fuzzer Mean (%) Median (%) Median (#BBs) Std
Deviation

Skewness Kurtosis

mruby 20258 / 70.5%

Grimoire 66.1% 66.6% 19 137 4.55 −0.54 −0.76
AFL 53.7% 53.4% 15 355 4.28 0.14 −0.27
Angora 53.3% 53.8% 15 452 4.87 0.17 −0.96
QSym 49.2% 49.0% 14 084 2.20 0.33 0.95
Redqueen 45.9% 46.4% 13 339 4.64 −0.98 0.05

TCC 9211 / 77.6%

Grimoire 71.8% 72.9% 8647 5.71 −1.89 3.68
AFL 11.8% 11.8% 1397 3.80 1.27 1.14
Angora 31.0% 30.3% 3600 6.51 1.01 0.06
QSym 11.9% 11.8% 1403 3.26 1.52 2.59
Redqueen 56.7% 56.4% 6695 8.13 0.03 −1.93

PHP 46805 / 27.9%

Grimoire 20.8% 21.2% 35 606 20.26 0.12 −1.38
AFL 13.2% 13.3% 22 323 3.64 −0.09 −0.96
Angora 12.1% 12.2% 20 501 6.39 −0.37 −0.58
QSym 12.7% 12.7% 21 276 2.60 0.22 −1.11
Redqueen 14.5% 14.5% 24 367 1.87 0.37 −0.83

Boolector 23207 / 33.1%

Grimoire 25.2% 24.9% 17 461 16.77 0.51 −0.65
AFL 14.0% 14.0% 9790 7.46 0.30 −0.57
Angora 13.2% 12.8% 8986 9.20 0.79 −0.17
QSym 13.7% 14.0% 9782 6.94 −0.39 −1.24
Redqueen 13.3% 13.3% 9305 9.63 0.21 −1.23

Lua 6205 / 64.1%

Grimoire 54.4% 55.2% 5339 6.47 0.20 −0.73
AFL 51.9% 51.9% 5016 1.61 0.84 −0.15
Angora 59.9% 60.1% 5817 2.96 0.05 −1.39
QSym 54.8% 52.6% 5091 9.52 1.07 −0.65
Redqueen 44.5% 44.4% 4299 2.30 −0.30 −1.19

libxml 10437 / 13.2%

Grimoire 11.7% 11.6% 9190 5.52 0.98 0.02
AFL 11.1% 11.2% 8881 3.40 −0.39 −0.92
Angora 0.0% 0.0% 0 nan 0.00 −3.00
QSym 10.8% 10.8% 8598 2.36 0.95 1.45
Redqueen 10.1% 10.1% 7979 3.72 0.72 −0.25

SQLite 22031 / 57.1%

Grimoire 48.6% 46.8% 18 064 9.25 0.80 −0.72
AFL 34.6% 33.9% 13 072 10.02 0.60 −0.34
Angora 33.1% 34.2% 13 218 12.12 −0.30 −1.05
QSym 33.4% 33.6% 12 988 10.91 −0.33 −0.18
Redqueen 32.3% 32.6% 12 599 4.77 0.18 −0.21

NASM 10015 / 51.1%

Grimoire 47.7% 48.4% 9483 7.58 −2.58 5.67
AFL 43.2% 43.0% 8442 1.68 1.07 1.09
Angora 46.9% 47.0% 9211 5.27 0.06 −1.19
QSym 42.1% 42.6% 8357 4.72 −1.49 2.40
Redqueen 44.9% 45.5% 8928 4.21 −0.20 −0.89

Table 4.2: Statistics on basic block coverage for tested fuzzers. In the column „Best
Coverage“, we provide the highest number of basic blocks a run found and the percentage
relative to the number of basic blocks obtained from IDA Pro [113].

A complete statistical description of the results is given in Table 4.2. We perform a
confirmatory statistical analysis on the results, as shown in Table 4.1. The results show
that in all but two cases (Lua and NASM), Grimoire offers relevant and significant
improvements over all state-of-the-art alternatives. On average, it finds nearly 20%
more coverage than the second best alternative.

Lua accepts both source files (text) as well as byte code. Grimoire can only make
effective mutations in the domain of language features and not the bytecode. However,
other fuzzers can perform on both; this is why Angora outperforms Grimoire on this
target. It is worth mentioning that Grimoire outperforms Redqueen, the baseline
on top of which our approach is implemented.
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To partially answer RQ 1, we showed that in terms of code coverage, Grimoire
outperforms other state-of-the-art bug finding tools (in most cases). Second, to answer
RQ 3, we demonstrated that Grimoire significantly improves the performance on
targets with highly structured inputs when compared to our baseline (Redqueen).

4.5.3 Structured Gray-box Fuzzers

Generally, we expect structured and grammar-based fuzzers to have an edge over
grammar inference fuzzers like Grimoire since they have access to a manually crafted
grammar. To quantify this advantage, we evaluate Grimoire against current structured
gray-box fuzzers. To this end, we choose Nautilus (commit „dd3554a“), a state-of-the-
art coverage-guided fuzzer, since it can fuzz a wide variety of targets if provided with a
hand-written grammar. We evaluate on the targets used in Nautilus’ experiments,
mruby, PHP and Lua, as their grammars are available. Unfortunately, Grimoire is not
capable of running ChakraCore, the fourth target Nautilus was evaluated on; thus, we
replace it by JavaScriptCore and use Nautilus’ JavaScript grammar. We observed
that the original version of Nautilus had some timeout problems during fuzzing where
the timeout detection did not work properly. We fixed this for our evaluation.

For each of the four targets, we perform an experiment with the same setup as the
first experiment (again, 12 runs for 48 hours). The results are shown in Figure 4.3. As
expected, our completely automated method is defeated in most cases by Nautilus
since it uses manually fine-tuned grammars. Surprisingly, in the case of mruby, we find
that Grimoire is able to outperform even Nautilus.

To evaluate whether Grimoire is still useful in scenarios where a grammar is available,
we perform another experiment. We extract the corpus produced by Nautilus after
half of the time (i. e., 24 hours) and continue to use Grimoire for another 24 hours
using this seed corpus. For these incremental runs, we reduce Grimoire’s upper bound
for input generalization to 2, 048 bytes; otherwise, our fuzzer would mainly spend time
in the generalization phase since Nautilus produces very large inputs. The results are
displayed in Figure 4.3 (incremental). This experiment demonstrates that even despite
manual fine-tuning, the grammar often contains blind spots, where an automated
approach such as ours can infer the implicit structure which the program expects. This
structure may be quite different from the specified grammar. As Figure 4.3 shows, by
using the corpus created by Nautilus, Grimoire surpasses Nautilus individually
in all cases (RQ 2). A confirmatory statistical analysis of the results is presented in
Table 4.3. In three cases, Grimoire is able to improve upon hand written grammars
by nearly 10%.

Additionally, we intended to compare Grimoire against CodeAlchemist and jsfun-
fuzz, two other state-of-the art grammar-based fuzzers which specialize on JavaScript
engines. Although these two fuzzers are not coverage-guided—making a fair evalua-
tion challenging—we consider the comparison of specialized JavaScript grammar-based
fuzzers to general-purpose grammar-based fuzzers as interesting. Unfortunately, jsfun-
fuzz was not working with JavaScriptCore out of the box as it is specifically tailored
to SpiderMonkey. Since it requires significant modifications to run on JavaScriptCore,
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Figure 4.3: The coverage (in basic blocks) produced by Grimoire and Nautilus
(using the hand written grammars of the authors of Nautilus) over 12 runs at 48
h on various targets. The incremental plots show how running Nautilus for 48h
compares to running Nautilus for the first 24h and then continue fuzzing for 24h with
Grimoire. Displayed are the median and the 66.7% confidence interval.
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Table 4.3: Confirmatory data analysis of our experiment. We compare the coverage
produced by Grimoire against Nautilus with hand written grammars. The effect size
is the difference of the medians in basic blocks in the incremental experiment. In three
experiments, the effect size is relevant and the changes are highly significant (marked
bold, p < 5.0E-02). Note that we abbreviate JavaScriptCore with JSC.

Target Best
Alternative

Effect Size
(∆ = Ā− B̄)

Effect Size
in % of Best

p-
value

mruby Nautilus 2025 10.0% 1.8E-05
Lua Nautilus 553 5.2% 5.0E-02
PHP Nautilus 5465 9.3% 3.6E-03
JSC Nautilus 15445 11.0% 1.8E-05

we considered the required engineering effort to be out of scope for this work. On the
other hand, CodeAlchemist requires an extensive seed corpus of up to 60, 000 valid
JavaScript files—which were not released together with the source files. We tried to
replicate the seed corpus as described by the authors of CodeAlchemist. However,
despite the authors’ kind help, we were unable to run CodeAlchemist with our
corpus.

Overall, these experiments confirm our assumption that structured gray-box fuzzers such
as Nautilus have an edge over grammar inference fuzzers like Grimoire. However,
deploying our approach on top of a grammar-based fuzzer (incremental runs) increases
code coverage. Therefore, we partially respond to RQ 1 and provide an answer to RQ 2
by stating that Grimoire is a valuable addition to current fuzzing techniques.

4.5.4 Grammar Inference Techniques
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Figure 4.4: Comparing Grimoire against Glade (median and 66.7% interval). In
the plot for Glade +Training, we include the training time that glade used. For
comparison, we also include plots where we omit the training time. The horizontal bar
displays the coverage produced by the seed corpus that Glade used during training.
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To answer RQ 4, we compare our approach to other grammar inference techniques in
the context of fuzzing. Existing work in this field includes Glade, Autogram and
Pygmalion. However, since Pygmalion targets only Python and Autogram only
Java programs, we cannot evaluate them as Grimoire only supports targets that can
be traced with Intel-PT (since Redqueen heavily depends on it).

Therefore, for this evaluation, we use Glade (commit „b9ef32e“), a state-of-the-art
grammar inference tool. It operates in two stages. Given a program as black-box oracle
as well as a corpus of valid input samples, it learns a grammar in the first stage. In
the second stage, Glade uses this grammar to produce inputs that can be used for
fuzzing. Glade does not generate a continuous stream of inputs, hence we modified it
to provide such capability. We then use these inputs to measure the coverage achieved
by Glade in comparison to Grimoire. Note that due to the excessive amount of
inputs produced by Glade, we use a corpus minimization tool—afl-cmin—to identify
and remove redundant inputs before measuring the coverage [233].

Note, we have to extend Glade for each target that is not natively supported and must
manually create a valid seed corpus. For this reason, we restrict ourselves to the three
targets libxml, mruby and Lua. From these, libxml is the only one that was also used
in Glade’s evaluation. Therefore, we are able to re-use their provided corpus for this
target. We choose the other two since we want to achieve comparability with regards
to previous experiments.

To allow for a fair comparison, we provide the same corpus to Grimoire. Again, we
repeat all experiments 12 times for 48 hours each. The results of this comparison are
depicted in Figure 4.4. Note that this figure includes two different experiments of
Glade. In the first experiment, we include the time Glade spent on training into the
measurement while for the second measurement, Glade is provided the advantage of
concluding the training stage before measurement is started for the fuzzing process. As
can be seen in Figure 4.4, Grimoire significantly outperforms Glade on all targets for
both experiments. Similar to earlier experiments, we perform a confirmatory statistical
analysis. The results are displayed in Table 4.4; they are in all cases relevant and
statistically significant. If we consider only the new coverage found (beyond what is
already contained in the training set), we are able to outperform Glade by factors
from two to five. We therefore conclude in response to RQ 4 that we significantly
exceed comparative grammar inference approaches in the context of fuzzing.

We designed another experiment to evaluate whether Glade’s automatically inferred
grammar can be used for Nautilus and how it performs compared to hand written
grammars. However, Glade does not use the grammar directly but remembers how
the grammar was produced from the provided test cases and uses the grammar only to
apply local mutations to the input. Unfortunately, as a consequence, their grammar
contains multiple unproductive rules, thus preventing their usage in Nautilus.

4.5.5 Mutations Statistic

During the aforementioned experiments, we also collected various statistics on how
effective different mutators are. We measured how much time was spent using Gri-
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Table 4.4: Confirmatory data analysis of our experiments. We compare the coverage
produced by Grimoire against Glade. The effect size is the difference of the medians
in basic blocks. In all experiments, the effect size is relevant and the changes are highly
significant: it is multiple orders of magnitude smaller than the usual bound of p <
5.0E-02 (bold).

Target Best
Alternative

Effect Size
(∆ = Ā− B̄)

Effect Size
in % of Best

p-
value

mruby Glade 8546 43.6% 9.1E-05
Lua Glade 2775 38.1% 9.1E-05
libxml Glade 5213 57.2% 9.1E-05

moire’s different mutation strategies as well as how many of the inputs were found
by each strategy. This allows us to rank mutation strategies based on the number of
new paths found per time used. The strategies include a havoc stage, Redqueen’s
Input-to-State-based mutation stage and our structural mutation stage. The times
for our structural mutators include the generalization process (including the necessary
minimization that also benefits the other mutators).

As Table 4.5 shows, our structural mutators are competitive with other mutators, which
answers RQ 5. As the coverage results in Figure 4.2 show, the mutators are also able
to uncover paths that would not have been found otherwise.

4.5.6 Real-World Bugs

We use Grimoire on a set of different targets to observe whether it is able to uncover
previously unknown bugs (RQ 6). To this end, we manually triaged bugs found during
our evaluation. As illustrated in Table 4.6, Grimoire found more bugs than all other
tools in the evaluation combined. We responsibly disclosed all of them to the vendors.
For these, 11 CVEs were assigned. Note that we found a large number of bugs that
did not lead to assigned CVEs. This is partially because projects such as PHP do
not consider invalid inputs as security relevant, even when custom scripts can trigger
memory corruption. We conclude RQ 6 by finding that Grimoire is indeed able to
uncover novel bugs in real-world applications.

4.6 Discussion

The methods introduced in this chapter produce significant performance gains on targets
that expect highly structured inputs without requiring any expert knowledge or manual
work. As we have shown, Grimoire can also be used to support grammar-based fuzzers
with well-tuned grammars but cannot outperform them on their own. In contrast to
similar methods, our approach does not rely on complex primitives such as symbolic
execution or taint tracking. Therefore, it can easily be integrated into existing fuzzers.
Additionally, since Grimoire is based on Redqueen, it can be used on a wide variety of
binary-only targets, ranging from userland programs to operating system kernels.
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Table 4.5: Statistics for each of Grimoire’s mutation strategies (i. e., our structured
mutations, Redqueen’s Input-to-State-based mutations and havoc). For every target
evaluated we list the total number of inputs found by a mutation, the time spent on
this strategy and the ratio of inputs found per minute.

Mutation Target #Inputs Time Spent (min) #Inputs/Min

Structured

mruby 9040 1531.18 5.90
PHP 27063 2467.17 10.97
Lua 2849 2064.49 1.38
SQLite 5933 1325.26 4.48
TCC 6618 2271.03 2.91
Boolector 3438 2399.85 1.43
libxml 4883 2001.38 2.44
NASM 12696 1955.42 6.49
JavaScriptCore 38465 2460.95 15.63

Input-to-State

mruby 814 268.23 3.03
PHP 902 111.46 8.09
Lua 530 307.12 1.73
SQLite 603 768.72 0.78
TCC 1020 118.23 8.63
Boolector 325 102.87 3.16
libxml 967 359.03 2.69
NASM 1329 213.84 6.22
JavaScriptCore 400 82.76 4.83

Havoc

mruby 2010 339.03 5.93
PHP 2546 278.21 9.15
Lua 1684 492.99 3.42
SQLite 1827 742.13 2.46
TCC 2514 484.73 5.19
Boolector 956 373.85 2.56
libxml 2173 504.86 4.30
NASM 2876 678.59 4.24
JavaScriptCore 3800 279.62 13.59

Despite all advantages, our approach has significant difficulties with more syntactically
complex constructs, such as matching the ID of opening and closing tags in XML or
identifying variable constructs in scripting languages. For instance, while Grimoire
is able to produce nested inputs such as „<a><a><a>FOO</a></a></a>“, it struggles
to generalize „<a>�</a>“ to the more unified representation „< A >�</ B >“ with the
constraint A = B. A solution for such complex constructs could be the following
generalization heuristic: (i) First, we record the new coverage for the current input.
(ii) We then change only a single occurrence of a substring in our input and record
its new coverage. For instance, consider that we replace a single occurrence of „a“ by
„b“ in „<a><a><a>FOO</a></a></a>“ and obtain „<b><a><a>FOO</a></a></a>“. This
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Table 4.6: Overview of submitted bugs and CVEs. Fuzzers which did not find the
bug during our evaluation are denoted by 7, while those who did are marked by 3. We
indicate targets not evaluated by a specific fuzzer with ’-’. We abbreviate Use-After-Free
(UAF), Out-of-Bounds (OOB) and Buffer Overflow (BO).
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PHP OOB-write 3 7 7 7 7 3

PHP OOB-read 3 7 7 3 3 7

PHP OOB-read 3 7 7 7 7 3

PHP OOB-read 3 7 7 7 7 7

TCC 2018-20374 OOB-write 3 7 7 7 7 -
TCC 2018-20375 OOB-write 3 3 7 7 7 -
TCC 2018-20376 OOB-write 3 3 7 7 7 -
TCC 2019-12495 OOB-write 3 7 7 7 7 -
TCC 2019-9754 OOB-write 3 3 7 7 7 -
TCC OOB-write 7 3 7 7 7 -
Boolector 2019-7559 OOB-write 3 7 7 7 7 -
Boolector 2019-7560 UAF-write 3 7 7 7 7 -
NASM 2019-8343 UAF-write 3 3 7 7 7 -
NASM OOB-write 3 7 3 7 7 -
NASM OOB-write 3 7 7 7 7 -
NASM OOB-write 3 7 7 7 7 -
NASM OOB-write 3 7 3 7 7 -
NASM OOB-write 7 7 3 7 7 -

gnuplot 2018-19490 BO 3 - - - - -
gnuplot 2018-19491 BO 3 - - - - -
gnuplot 2018-19492 BO 3 - - - - -

change results in an invalid XML tag which leads to different coverage compared to the
one observed in (i). (iii) Finally, we change multiple instances of the same substring
and compare the new coverage of the modified input with the one obtained in (i). If
we achieved the same new coverage in (iii) and (i), we can assume that the modified
instances of the same substring are related to each other. For example, we replace
multiple occurrences of „a“ with „b“ and obtain „<b><a><a>FOO</a></a></b>“. In this
example, the coverage is the same as for the original input since the XML remains
syntactically correct.

Similarly, our generalization approach might be too coarse in many places. Obtaining
more precise rules would help uncovering deeper parts of the target application in cases
where multiple valid statements have to be produced. Consider, for instance, a scripting
language interpreter such as the ones used in our evaluation. Certain operations might
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require a number of constructors to be successfully called. For example, it might be
necessary to get a valid path object to obtain a file object that can finally be used
to perform a read operation. A more precise representation would be highly useful in
such cases. One could try to infer whether a combination is „valid“ by checking if the
combination of two inputs exercises the combination of the new coverage introduced
by both inputs. For instance, assume that input „a�b“ triggers the coverage bytes
7 and 10 and that input „�=�“ triggers coverage byte 20. Then, a combination of
these two inputs such as „�a�=�b“ could trigger the coverage bytes 7, 10 and 20.
Using this information, it might be possible to infer more precise grammar descriptions
and thus generate inputs that are closer to the target’s semantics than it is currently
possible in Grimoire. While this approach would most likely further reduce the gap
between hand-written grammars and inferred grammars, well-designed hand-written
grammars will always have an edge over fuzzers with no prior knowledge: any kind of
inference algorithm first needs to uncover structures before the obtained knowledge can
be used. A grammar-based fuzzer has no such disadvantage. If available, human input
can improve the results of grammar inference or steer its direction. An analyst can
provide a partial grammar to make the grammar-fuzzer focus on a specific interesting
area and avoid exploring paths that are unlikely to contain bugs. Therefore, Grimoire
is useful if the grammar is unknown or under-specified but cannot be considered a full
replacement for grammar-based fuzzers.

4.7 Related Work

A significant number of approaches to improve the performance of different fuzzing
strategies has been proposed over time. Early on, fuzzers typically did not observe
the inner workings of the target application, yet different approaches were proposed to
improve various aspects of fuzzers: different mutation strategies were evaluated [78, 111],
the process of selecting and scheduling of seed inputs was analyzed [57, 180, 217] and,
in some cases, even learned language models were used to improve the effectiveness
of fuzzing [95, 107]. After the publication of AFL [231], the research focus shifted
towards coverage-guided fuzzing techniques. Similarly to the previous work on blind
fuzzing, each individual component of AFL was put under scrutiny. For example,
AFLFast [46] and AFLGo [47] proposed scheduling mechanisms that are better suited
to some circumstances. Both, CollAFL [85] and InsTrim [119], enhanced the way in
which coverage is generated and stored to reduce the amount of memory needed. Other
publications improved the ways in which coverage feedback is collected [96, 194, 206, 222].
To advance the ability of fuzzers to overcome constraints that are hard to guess,
a wide array of techniques were proposed. Commonly, different forms of symbolic
execution are used to solve these challenging instances [53, 56]. In most of these cases,
a restricted version of symbolic execution (concolic execution) is used [92–94, 106,
205, 215]. To further improve upon these techniques, DigFuzz [235] provides a better
scheduling for inputs to the symbolic executor. Sometimes, instead of using these heavy-
weight primitives, more lightweight techniques such as taint tracking [59, 86, 106, 179],
patches [34, 76, 171, 215] or instrumentation [34, 142] are used to overcome the same
hurdles.
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While these improvements generally work very well for binary file formats, many
modern target programs work with highly structured data. To target these programs,
generational fuzzing is typically used. In such scenarios, the user can often provide a
grammar. In most cases, fuzzers based on this technique are blind fuzzers [78, 116, 167,
186, 229].

Recent projects such as AFLSmart [173], Nautilus [33] and Zest [169] combined
the ideas of generational fuzzing with coverage guidance. CodeAlchemist [108]
even ventures beyond syntactical correctness. To find novel bugs in mature JavaScript
interpreters, it tries to automatically craft syntactically and semantically valid inputs
by recombining input fragments based on inferred types of variables. All of these
approaches require a good format specification and—in some cases—good seed corpora.
CodeAlchemist even needs access to a specialized interpreter for the target language
to trace and infer type annotations. In contrast, our approach has no such preconditions
and is thus easily integrable into most fuzzers.

Finally, to alleviate some of the disadvantages that the mentioned grammar-based
strategies have, multiple approaches were developed to automatically infer grammars
for given programs. Glade [38] can systematically learn an approximation to the
context-free grammars parsed by a program. To learn the grammar, it needs an oracle
that can answer whether a given input is valid or not as well as a small set of valid inputs.
Similar techniques are used by Pygmalion [98] and Autogram [118]. However, both
techniques directly learn from the target application without requiring a modified version
of the target. Autogram still needs a large set of inputs to trace, while Pygmalion
can infer grammars based solely on the target application. Additionally, both approaches
require complex analysis passes and even symbolic execution to produce grammars.
These techniques cannot easily be scaled to large binary applications. Finally, all three
approaches are computationally expensive.

4.8 Conclusion
We developed and demonstrated the first fully automatic algorithm that integrates
structure-aware mutations into the fuzzing process. In contrast to other approaches,
we need no additional modifications or assumptions about the target application. We
demonstrated the capabilities of our approach by evaluating our implementation called
Grimoire against various state-of-the-art coverage-guided fuzzers. Our evaluation
shows that we outperform other coverage-guided fuzzers both in terms of coverage and
the number of bugs found. From this observation, we conclude that it is possible to
significantly improve the fuzzing process in the absence of program input specifications.
Furthermore, we conclude that even when a program input specification is available,
our approach is still useful when it is combined with a generational fuzzer.
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Chapter 5

Predicate Synthesis to Automate Root
Cause Explanation

5.1 Introduction

Fuzz testing (short: fuzzing) is a powerful software testing technique that, especially in
recent years, gained a lot of traction both in industry and academia [33, 34, 59, 171,
179, 205, 231]. In essence, fuzzing capitalizes on a high throughput of inputs that are
successively modified to uncover different paths within a target program. The recent
focus on new fuzzing methods has produced a myriad of crashes for software systems,
sometimes overwhelming the developers who are tasked with fixing them [29, 189]. In
many cases, finding a new crashing input has become the easy and fully automated part,
while triaging crashes remains a manual, labor-intensive effort. This effort is mostly
spent on identifying the actual origin of a crash [232]. The situation is worsened as
fuzzing campaigns often result in a large number of crashing inputs, even if only one
actual bug is found: a fuzzer can identify multiple paths to a crash, while the fault is
always the same. Thus, an analyst has to investigate an inflated number of potential
bugs. Consequently, developers lose time on known bugs that could be spent on fixing
others.

To reduce the influx of crashes mapping to the same bug, analysts attempt to bucket
such inputs. Informally speaking, bucketing groups crashing inputs according to some
metric—often coverage or hashes of the call stack—into equivalence classes. Typically,
it is assumed that analyzing one input from each class is sufficient. However, recent
experiments have shown that common bucketing schemes produce far too many buckets
and, even worse, cluster distinct bugs into the same bucket [134]. Even if there are only
a few inputs to investigate, an analyst still faces another challenge: Understanding the
reasons why a given input leads to a crash. Often, the real cause of a crash—referred
to as root cause—is not located at the point the program crashes; instead, it might
be far earlier in the program’s execution flow. Therefore, an analyst needs to analyze
the path from the crashing location backward to find the root cause, which requires
significant effort.
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Consider, for example, a type confusion bug: a pointer to an object of type A is used in
a place where a pointer to B is expected. If a field of B is accessed, an invalid access on
a subsection of A can result. If the structures are not compatible (e. g., A contains a
string where a pointer is expected by B), this can cause memory corruption. In this
case, the crashing location is most likely not the root cause of the fault, as the invariant
„points to an instance of B“ is violated in a different spot. The code that creates the
object of type A is also most likely correct. Instead, the particular control flow that
makes a value from type A end up in B’s place is at fault.

In a naive approach, an analyst could inspect stack and register values with a debugger.
Starting from the crash, they can manually backtrace the execution to the root cause.
Using state-of-the-art sanitizers such as the ASAN family [197] may detect illegal
memory accesses closer to the root cause. In our example, the manual analysis would
start at the crashing location, while ASAN would detect the location where the memory
corruption occurred. Still, the analyst has to manually recognize the type confusion as
the root cause—a complicated task since most code involved is behaving correctly.

More involved approaches such as POMP [221], RETracer [68], REPT [69] and
DEEPVSA [105] use automated reverse execution and backward taint analysis. These
are particularly useful if the crash is not reproducible. For example, REPT and
RETracer can analyze crashes that occurred on end-devices by combining core dumps
and Intel PT traces. However, these approaches generally do not allow to automatically
identify the root cause unless there is a direct data dependency connecting root cause
and crashing instruction. Furthermore, REPT and RETracer focus on providing an
interactive debugging session for an analyst to inspect manually what happened before
the crash.

In cases such as the type confusion above, or when debugging JIT-based software such
as JavaScript engines, a single crashing input may not allow identifying the root cause
without extensive manual reasoning. Therefore, one can use a fuzzer to perform crash
exploration. In this mode, the fuzzer is seeded with crashing inputs which it mutates as
long as they keep crashing the target application. This process generates new inputs
that are related to the original crashing input, yet slightly different (e. g., they could
trigger the crash via a different path). A diverse set of crashing inputs that mostly
trigger the same bug can aid analysis. Observing multiple ranges of values and different
control-flow edges taken can help narrow down potential root causes. However, none
of the aforementioned methods takes advantage of this information. Consequently,
identifying the root cause remains a challenging task, especially if there is no direct
data dependency between root cause and crashing instruction. Although techniques
such as ASAN, POMP, REPT and RETracer provide more context, they often fail
to identify the root cause and provide no explanation of the fault.

In this chapter, we address this problem by developing an automated approach capable
of finding the root cause given a crashing input. This significantly reduces human effort:
unlike the approaches discussed previously, we do not only identify a code location,
but also an explanation of the problem. This also reduces the number of locations
an analyst has to inspect, as Aurora only considers instructions with a plausible
explanation.
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To enable precise identification of the root cause, we first pick one crashing input and
produce a diverse set of similar inputs, some of which cause a crash while others do
not. We then execute these newly-generated inputs while tracking the binary program’s
internal state. This includes control-flow information and relevant register values for
each instruction. Given such detailed traces for many different inputs, we create a set
of simple Boolean expressions (around 1,000 per instruction) to predict whether the
input causes a crash. Intuitively, these predicates capture interesting runtime behavior
such as whether a specific branch is taken or whether a register contains a suspiciously
small value.

Consider our previous type confusion example and assume that a pointer to the
constructor is called at some location in the program. Using the tracked information
obtained from the diversified set of inputs, we can observe that (nearly) all calls in
crashing inputs invoke the constructor of type A, while calls to the constructor of B
imply that the input is not going to cause a crash. Thus, we can pinpoint the problem
at an earlier point of the execution, even when no data taint connection exists between
crashing location and root cause. This example also demonstrates that our approach
needs to evaluate a large set of predicates, since many factors have to be captured,
including different program contexts and vulnerability types. Using the predicates as a
metric for each instruction, we can automatically pinpoint the possible root cause of
crashes. Additionally, the predicates provide a concrete explanation of why the software
fault occurs.

We built a prototype implementation of our approach in a tool called Aurora. To
evaluate Aurora, we analyze 25 targets that cover a diverse set of vulnerability classes,
including five use-after-free vulnerabilities, ten heap buffer overflows and two type
confusion vulnerabilities that previous work fails to account for. We show that Aurora
reliably allows identifying the root cause even for complex binaries. For example, we
analyzed a type confusion bug in mruby where an exception handler fails to raise a
proper exception type. It took an expert multiple days to identify the actual fault.
Using our technique, the root cause was pinpointed automatically.

In summary, our key contributions are threefold:

• We present the design of Aurora, a generic approach to automatically pinpoint
the location of the root cause and provide a semantic explanation of the crash.

• We propose a method to synthesize domain-specific predicates for binary programs,
tailored to the observed behavior of the program. These predicates allow accurate
predictions on whether a given input will crash or not.

• We implement a prototype of Aurora and demonstrate that it can automatically
and precisely identify the root cause for a diverse set of 25 software faults.

To foster research on this topic, we release the implementation of Aurora at https:
//github.com/RUB-SysSec/aurora.
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5.2 Challenges in Root Cause Analysis

Despite various proposed techniques, root cause identification and explanation are
still complex problems. Thus, we now explore different techniques and discuss their
limitations.

5.2.1 Running Example

The following code snippet shows a minimized example of Ruby code that leads to a
type confusion bug in the mruby interpreter [8] found by a fuzzer:

1 NotImplementedError = St r ing
2 Module . cons tant s

In the first line, the exception type NotImplementedError is modified to be an alias
of type String. As a consequence, each instance of NotImplementedError created in
the future will be a String rather than the expected exception. In the second line, we
call the constants function of Module. This function does not exist, provoking mruby
to raise a NotImplementedError. Raising the exception causes a crash in the mruby
interpreter.

To understand why the crash occurs, we need to dive into the C code base of the mruby
interpreter. Note that mruby types are implemented as structs on the interpreter level.
When we re-assign the exception type NotImplementedError to String, this is realized
on C level by modifying the pointer such that it points to a struct representing the
mruby String type. The method Module.constants is only a stub that creates and
raises an exception. When the exception is raised in the second line, a new instance of
NotImplementedError is constructed (which now actually results in a String object)
and passed to mruby’s custom exception handling function. This function assumes that
the passed object has an exception type without checking this further. It proceeds
to successfully attach some error message—here „Module.constants not implemented“
(length 0x20)—to the presumed exception object. Then, the function continues to
fill the presumable exception with debug information available. During this process,
it attempts to dereference a pointer to a table that is contained within all exception
objects. However, as we have replaced the exception type by the string type, the layout
of the underlying struct is different: At the accessed offset, the String struct stores
the length of the contained string instead of a pointer as it would be the case for the
exception struct. As a result, we do not dereference the pointer but interpret the length
field as an address, resulting in an attempt to dereference 0x20. Since this leads to an
illegal memory access, the program crashes.

To sum up, redefining an exception type with a string leads to a type confusion
vulnerability, resulting in a crash when this exception is raised. The developer fix
introduces a type check, thus preventing this bug from provoking a crash.
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5.2.2 Crash Triaging

Assume our goal is to triage the previously explained bug, given only the crashing input
(obtained from a fuzzing run) as a starting point. In the following, we discuss different
approaches to solve this task and explain their challenges.

Debugger. Starting at the crashing location, we can manually inspect the last few
instructions executed, the registers at crashing point and the call stack leading to this
situation. Therefore, we can see that 0x20 is first loaded to some register and then
dereferenced, resulting in the crash. Our goal then is to identify why the code attempts
to dereference this value and how this value ended up there. We might turn towards
the call stack, which indicates that the problem arises during some helper function that
is called while raising an exception. From this point on, we can start investigating by
manually following the flow of execution backward from the crashing cause up to the
root cause. Given that the code of the mruby interpreter is non-trivial and the bug is
somewhat complex, this takes a lot of time. Thus, we may take another angle and use
some tool dedicated to detecting memory errors, for example, sanitizers.

Sanitizer. Sanitizers are a class of tools that often use compile-time instrumentation
to detect a wide range of software faults. There are various kinds of sanitizers, such as
MSAN [204] to detect usage of uninitialized memory or ASAN [197] to detect heap-
and stack-based buffer overflows, use-after-free (UAF) errors and other faults. Sanitizers
usually rely on the usage of shadow memory to track whether specific memory can be
accessed or not. ASAN guards allocated memory (e. g., stack and heap) by marking
neighboring memory as non-accessible. As a consequence, it detects out-of-bounds
accesses. By further marking freed memory as non-accessible (as long as other free
memory is available for allocation), temporal bugs can be detected. MSAN uses
shadow memory to track for each bit, whether it is initialized or not, thereby preventing
unintended use of uninitialized memory.

Using such tools, we can identify invalid memory accesses even if they are not causing
the program to crash immediately. This situation may occur when other operations
do not access the overwritten memory. Additionally, sanitizers provide more detailed
information on crashing cause and location. As a consequence, sanitizers are more
precise and pinpoint issues closer to the root cause of a bug.

Unfortunately, this is not the case for our example: re-compiling the binary with ASAN
provides no new insights because the type confusion does not provoke any memory
errors that can be detected by sanitizers. Consequently, we are stuck at the same
crashing location as before.

Backward Taint Analysis. To deepen our understanding of the bug, we could use
automated root cause analysis tools [68, 69, 221] that are based on reverse execution
and backward taint tracking to increase the precision further. However, in our example,
there is no direct data flow between the crash site and the actual root cause. The data
flow ends in the constructor of a new String that is unrelated to the actual root cause.
As taint tracking does not provide interesting information, we try to obtain related
inputs that trigger the same bug in different crashing locations. Finding such inputs
would give us a different perspective on the bug’s behavior.
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Crash Exploration. To achieve this goal, we can use the so-called crash exploration
mode [232] that fuzzers such as AFL [231] provide. This mode takes a crashing input
as a seed and mutates it to generate new inputs. From the newly generated inputs, the
fuzzer only keeps those in the fuzzing queue that still result in a crash. Consequently,
the fuzzer creates a diverse set of inputs that mostly lead to the same crash but exhibited
new code coverage by exercising new paths. These inputs are likely to trigger the same
bug via different code paths.

To gain new insights into the root cause of our bug, we need the crash exploration
mode to trigger new behavior related to the type confusion. In theory, to achieve this,
the fuzzer could assign another type than String to NotImplementedError. However,
fuzzers such as AFL are more likely to modify the input to something like „Stringgg“
or „Strr“ than assigning different, valid types. This is due to the way its mutations
work [44]. Still, AFL manages to find various crashing inputs by adding new mruby
code unrelated to the bug.

To further strengthen the analysis, a fuzzer with access to domain knowledge, such as
grammar-based fuzzers [33, 78, 173], can be used. Such a fuzzer recognizes that String
is a grammatically valid element for Ruby which can be replaced by other grammar
elements. For example, String can be replaced by Hash, Array or Float. Assume that
the fuzzer chooses Hash; the newly derived input crashes the binary at a later point of
execution than our original input. This result benefits the analyst as comparing the two
inputs indicates that the crash could be related to NotImplementedError’s type. As a
consequence, the analyst might start focusing on code parts related to the object type,
reducing the scope of analysis. Still, this leaves the human analyst with an additional
input to analyze, which means more time spent on debugging.

Overall, this process of investigating the root cause of a given bug is not easy and—
depending on the bug type and its complexity—may take a significant amount of time
and domain knowledge. Even though various methods and tools exist, the demanding
tasks still have to be accomplished by a human. In the following, we present our
approach to automate the process of identifying and explaining the root cause for a
given crashing input.

5.3 Design

Given a crashing input and a binary program, our goal is to find an explanation of
the underlying software fault’s root cause. We do so by locating behavioral differences
between crashing and non-crashing inputs. In its core, our method conducts a statistical
analysis of differences between a set of crashing and non-crashing inputs. Thus, we
first create a dataset of diverse program behaviors related to the crash, then monitor
relevant input behavior and, finally, comparatively analyze them. This is motivated
by the insight that crashing inputs must—at some point—semantically deviate from
non-crashing inputs. Intuitively, the first relevant behavior during program execution
that causes the deviation is the root cause.

78



In a first step, we create two sets of related but diverse inputs, one with crashing and
one with non-crashing inputs. Ideally, we only include crashing inputs caused by the
same root cause. The set of non-crashing inputs has no such restrictions, as they are
effectively used as counterexamples in our method. To obtain these sets, we perform
crash exploration fuzzing on one initial crashing input (a so-called seed).

Given the two sets of inputs, we observe and monitor (i. e., trace) the program behavior
for each input. These traces allow us to correlate differences in the observations
with the outcome of the execution. Using this statistical reasoning, we can identify
differences that predict whether a program execution will crash or not. To formalize
these differences, we synthesize predicates that state whether a bug was triggered.
Intuitively, the first predicate that can successfully predict the outcome of all (or most)
executions also explains the root cause. As the final result, we provide the analyst with
a list of relevant explanations and addresses, ordered by the quality of their prediction
and time of execution. That is, we prefer explanations that predict the outcome well.
Amongst good explanations, we prefer these that are able to predict the crash as early
as possible.

On a high-level view, our design consist of three individual components: (1) input
diversification to derive two diverse sets of inputs (crashing and non-crashing), (2) mon-
itoring input behavior to track how inputs behave and (3) explanation synthesis to
synthesize descriptive predicates that distinguish crashing from non-crashing inputs. In
the following, we present each of these components.

5.3.1 Input Diversification

As stated before, we need to create a diverse but similar set of inputs for the single
crashing seed given as input to our approach. On the one hand, the inputs should be
diverse such that statistical analysis reveals measurable differences. On the other hand,
the inputs should share a similar basic structure such that they explore states similar to
the root cause. This allows for a comparative analysis of how crashes and non-crashes
behave on the buggy path.

To efficiently generate such inputs, we can use the crash exploration mode bundled with
fuzzers such as AFL. As described previously, this mode applies mutations to inputs
as long as they keep crashing. Inputs not crashing the binary are discarded from the
queue and saved to the non-crashing set; all inputs remaining within the fuzzing queue
constitute the crashing set. In general, the more diversified inputs crash exploration
produces, the more precise the statistical analysis becomes. Fewer inputs are produced
in less time but cause more false positives within the subsequent analysis. Once the
input sets have been created, they are passed to the analysis component.

5.3.2 Monitoring Input Behavior

Given the two sets of inputs—crashing and non-crashing—we are interested in collecting
data allowing semantic insights into an input’s behavior. To accommodate our binary-
only approach, we monitor the runtime execution of each input, collecting the values
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of various expressions. For each instruction executed, we record the minimum and
maximum value of all modified registers (this includes general-purpose registers and the
flag register). Similarly, we record the maximum and minimum value stored for each
memory write access. Notably and perhaps surprisingly, we did not observe any benefit
in tracing the memory addresses used; therefore, we do not aggregate information on
the target addresses. It seems that the resulting information is too noisy and all relevant
information is already found in observed registers. We only trace the minimum and
maximum of each value to limit the amount of data produced by loops. This loss of
information is justified by the insight that values causing a crash usually surface as
either a minimum or maximum value. Our evaluation empirically supports this thesis.
This optimization greatly increases the performance, as the amount of information
stored per instruction is constant. At the same time, it is precise enough to allow
statistical identification of differences. Besides register and memory values, we store
information on control-flow edges. This allows us to reconstruct a coarse control-flow
graph for a specific input’s execution. Control flow is interesting behavior, as it may
reveal code that is only executed for crashing inputs. Furthermore, we collect the
address ranges of stack and heap to test whether certain pointers are valid heap or
stack pointers.

We do not trace any code outside of the main executable, i. e., shared libraries. This
decreases overhead significantly while removing tracing of code that—empirically—is
not interesting for finding bugs within a given binary program. For each input, we store
this information within a trace file that is passed on to the statistical analysis.

5.3.3 Explanation Synthesis

Based on the monitoring, explanation synthesis is provided with two sets of trace files
that describe intrinsic behaviors of crashing and non-crashing inputs. Our goal is to
isolate behavior in the form of predicates that correlate to differences between crashing
and non-crashing runs. Any such predicate pointing to an instruction indicates that
this particular instruction is related to a bug. Our predicates are Boolean expressions
describing concrete program behavior, e. g., „the maximum value of rax at this position
is less than 2“. A predicate is a triple consisting of a semantic description (i. e., the
Boolean expression), the instruction’s address at which it is evaluated and a score
indicating the ability to differentiate crashes from non-crashes. In other words, the
score expresses the probability that an input crashes for which the predicate evaluates
to true. Consequently, predicates with high scores identify code locations somewhere
on the path between root cause and crashing location. In the last step, we sort these
predicates first by score, then by the order in which they were executed. Given this
sorted list of predicates, a human analyst can then manually analyze the bug. Since
these predicates and the calculation of the score are the core of our approach, we present
more details in the following section.
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5.4 Predicate-based Root Cause Analysis

Given the trace information for all inputs in both sets, we can reason about potential root
cause locations and determine predicates that explain the root cause. To this end, we
construct predicates capable of discriminating crashing and non-crashing runs, effectively
pinpointing conditions within the program that are met only when encountering the
crash. Through the means of various heuristics described in Section 5.4.4, we filter
the conditions and deduce a set of locations close to the root cause of a bug, aiding a
developer in the tedious task of finding and fixing the root cause. This step potentially
outputs a large number of predicates, each of which partitions the two sets. In order
to determine the predicate explaining the root cause, we set conditional breakpoints
that represent the predicate semantics. We then proceed to execute the binary for each
input in the crashing set, recording the order in which predicates are triggered. As a
result, we obtain for each input the order in which the predicates were encountered
during execution. Given this information and the predicates’ scores, we can define a
ranking over all predicates. In the following, we present this approach in detail.

The first step is to read the results obtained by tracing the inputs’ behavior. Given
these traces, we collect all control-flow transitions observed in crashing and non-crashing
inputs and construct a joined control-flow graph that is later used to synthesize control-
flow predicates. Afterward, we compute the set of instructions identified by their
addresses that are relevant for our predicate-based analysis. Since we are interested in
behavioral differences between crashes and non-crashes, we only consider addresses that
have been visited by at least one crashing and one non-crashing input. Note that—as
a consequence—some addresses are discarded if they are visited in crashes but not in
non-crashes. However, in such a situation, we would observe control-flow transitions
to these discarded addresses from addresses that are visited by inputs from both sets.
Consequently, we do not lose any precision by removing these addresses.

Based on the trace information, we generate many predicates for each address (i. e.,
each instruction). Then, we test all generated predicates and store only the predicate
with the highest score. In the following, we describe the types of predicates we use,
how these predicates can be evaluated and present our ranking algorithm. Note that by
assumption a predicate forecasts a non-crash, if it is based on an instruction that was
never executed. This is motivated by the fact that not-executed code cannot be the
cause of a crash.

5.4.1 Predicate Types

To capture a wide array of possible explanations of a software fault’s root cause, we
generate three different categories of predicates, namely (1) control-flow predicates, (2)
register and memory predicates, as well as (3) flag predicates. In detail, we use the
following types of predicates:

Control-flow Predicates. Based on the reconstructed control-flow graph, we synthe-
size edge predicates that evaluate whether crashes and non-crashes differ in execution
flow. Given a control-flow edge from x to y, the predicate has_edge_to indicates that
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we observed at least one transition from x to y. Contrary, always_taken_to expresses
that every outgoing edge from x has been taken to y. Finally, we evaluate predicates
that check if the number of successors is greater than or equal to n ∈ {0, 1, 2}.

Register and Memory Predicates. For each instruction, we generate predicates
based on various expressions: the minimum and the maximum of all values written to
a register or memory, respectively. For each such expression (e. g., r = max(rax)) we
introduce a predicate r < c. We synthesize constants for c such that the predicate is
a good predictor for crashing and non-crashing inputs. The synthesis is described in
Section 5.4.3. Additionally, we have two fixed predicates testing whether expressions are
valid heap or stack pointers, respectively: is_heap_ptr(r) and is_stack_ptr(r).

Flag Predicates. On the x86 and x86-64 architecture, the flag register tracks how
binary comparisons are evaluated and whether an overflow occurred, making it an
interesting target for analysis. We use flag predicates that each check one of the flag
bits, including the carry, zero and overflow flag.

5.4.2 Predicate Evaluation

For each address, we generate and test predicates of all types and store the predicate
with the highest score. In the following, we detail how to evaluate and score an
individual predicate. Generally speaking, we are interested in measuring the quality
of a predicate, i. e., how well it predicts the actual behavior of the target application.
Thus, it is a simple binary classification. If the target application crashes on a given
input—also referred to as test case in the following—the predicate should evaluate to
true. Otherwise, it should evaluate to false. We call a predicate perfect if it correctly
predicts the outcome of all test cases. In other words, such a predicate perfectly
separates crashing and non-crashing inputs.

Unfortunately, there are many situations in which we cannot find a perfect predicate;
consequently, we assign each predicate a probability on how well it predicts the program’s
behavior given the test cases. For example, if there are multiple distinct bugs within the
input set, no predicate will explain all crashes. This can occur if the crash exploration
happens to modify a crashing input in such a way that it triggers one or multiple
other bug(s). Alternatively, the actual best predicate might be more complex than
predicates that could be synthesized automatically; consequently, it cannot predict all
cases perfectly.

To handle such instances, we model the program behavior as a noisy evaluation of the
given predicate. In this model, the final outcome of the test case is the result of the
predicate XORed with some random variable. More precisely, we define a predicate
p as a mapping from an input trace to a Boolean variable (p : trace 7→ {0, 1}) that
predicts whether the execution crashes. Using this predicate, we build a statistical
model O(input) = p(input)⊕ R to approximate the observed behavior. The random
variable R is drawn from a Bernoulli distribution (R ∼ Bernoulli(θ)) and denotes the
noise introduced by insufficiently precise predicates. Whenever R = 0, the predicate
p(input) correctly predicts the outcome. When R = 1, the predicate mispredicts the
outcome. Our stochastic model has a single parameter θ that represents the probability

82



that the predicate mispredicts the actual outcome of the test case. We cannot know
the real value of θ without simulating every possible behavior of a program. Instead,
we perform maximum likelihood estimation using the sample of actual test inputs to
approximate a θ̂. This value encodes the uncertainty of the predictions made by the
predicate. We later employ this uncertainty to rank the different predicates:

θ̂ =
Cf +Nf

Cf + Ct +Nf +Nt

We count the number of both mispredicted crashes (Cf ) and mispredicted non-crashes
(Nf) divided by the number of all predictions, i. e., the number of all mispredicted
inputs as well as the number of all correctly predicted crashed (Ct) and non-crashes
(Nt).

As we demonstrate in Section 5.6.3, using crash exploration to obtain samples can
cause a significant class imbalance, i. e., we may find considerably more non-crashing
than crashing inputs. To avoid biasing our scoring scheme towards the bigger class, we
normalize each class by its size:

θ̂ =
1

2
∗
(

Cf

Cf + Ct

+
Nf

Nf +Nt

)
If θ̂ = 0, the predicate is perfect. If θ̂ = 1, the negation of the predicate is perfect.
The closer θ̂ is to 0.5, the worse our predicate performs in predicting the actual
outcome.

Finally, we calculate a score using θ̂. To obtain a score in the range of [0, 1], where 0
is the worst and 1 the best possible score, we calculate 2 ∗ abs(θ̂ − 0.5). We use this
score to pick the best predicate for each instruction that has been visited by at least
one crashing and one non-crashing input. While the score is used to rank predicates, θ̂
indicates whether p or its negation ¬p is the better predictor. Intuitively, if θ̂ > 0.5, p
is a good predictor for non-crashing inputs. As our goal is to predict crashes, we use
the negated predicate in these cases.

Example 5.1. Assume that we have 1, 013 crashing and 2, 412 non-crashing inputs.
Furthermore, consider a predicate p1, with p1 := min(rax) < 0xff. Then, we count
Cf := 1013, Ct = 0, Nf = 2000 and Nt = 412. Therefore, we estimate θ̂1 = 1

2
·(

1013
1013

+ 2000
2000+412

)
≈ 0.9146). The predicate score is s1 = 2 · abs(0.9146− 0.5) ≈ 0.8292,

indicating that the input is quite likely to crash the program. Even though θ̂ is large and
the majority of the outcomes is mispredicted, this high score is explained by the fact
that—as θ̂1 > 0.5—we invert the predicate p1. Thus, true and false positives/negatives
are switched, resulting in a large amount of true positives (Ct = 1013) and true negatives
(Nt = 2000) for the inverted predicate: ¬p1 := min(rax) ≥ 0xff

Testing another predicate p2 for the same instruction with θ̂2 = 0.01, we calculate the
score s2 = 2 · abs(0.01− 0.5) = 0.98. Since s2 > s1, consequently we only store p2 as
best predicate for this instruction.
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5.4.3 Synthesis of Constant Values

When computing our register and memory predicates of type r < c, we want to derive
a constant c that splits the test inputs into crashing and non-crashing inputs based on
all values observed for r during testing. These predicates can only be evaluated once a
value for c is fixed. Since c can be any 64-bit value, it is prohibitively expensive to try
all possible values. However, c splits the inputs into exactly two sets: Those where r is
observed to be smaller than c and the rest. The only way to change the quality of the
predicate is to choose a value of c that flips the prediction of at least one value of r. All
constants c between two different observations of r perform the exact same split of the
test inputs. Consequently, the only values that change the behavior of the predicate
are exactly the observed values of r. We exploit this fact to find the best value(s) for c
using only O(n ∗ log(n)) steps where n is the number of test cases.

To implement this, we proceed as follows: In a preprocessing step, we collect all values
for an expression r at the given instruction and sort them. Then, we test each value
observed for r as a candidate for c. We then want to evaluate our candidate for c on all
inputs reaching the address. Naively, we would recompute the score for each value of c;
however, this would yield a quadratic runtime. To increase the performance, we exploit
the fact that we only need Ct, Cf , Nt, Nf to calculate the score. This property of our
scoring scheme allows us to update the score in constant time when checking the next
candidate value of c.

To calculate the score for any candidate value ci, we start at the smallest candidate
c0 and calculate the predicate’s score by evaluating the predicate on all inputs and
counting the number of correctly predicted outcomes. After calculating the score of the
ith possible candidate ci, we can update the score for the candidate ci+1 by tracking
the number of correctly predicted crashes and non-crashes. Since using ci+1 instead of
ci only flips a single prediction, we can efficiently update Ct, Cf , Nt, Nf in constant
time. When using ci resulted in a correctly predicted crash for the ith observation, we
decrement Ct. Likewise, if the old prediction was an incorrectly predicted non-crash,
we decrement Nf . The other cases are handled accordingly. Afterward, we increment
the number of observed outcomes based on the results of the new predicate in the same
fashion. This allows us to track Ct, Cf , Nt, Nf while trying all values of c to determine
the value which maximizes the score. Finally, we might have dropped some inputs that
did not reach the given instruction; thus, we then perform one re-evaluation of the score
on the whole dataset to determine the final score for this predicate.

Note that the predicate is constructed involving all addresses reaching that instruc-
tion. Consequently, it is perfect with respect to the whole dataset: all data not yet
evaluated does not reach this address and thus cannot affect the synthesized value.
Another consequence of this fact is that our synthesis works both for ranges and single
values.

Example 5.2. Consider that we want to synthesize a value c that maximizes the score
of the predicate p(r) = r < c. Assume that we have four inputs reaching the address
where the predicate is evaluated and we observed the following data:
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outcome crash crash non-crash non-crash

values of r 0x08 0x0f 0x400254 0x400274

In this example, the values are already sorted. Remember that we are interested in
locating the cutoff value, i. e., the value of c that separates crashing and non-crashing
inputs best. Hence, we proceed to calculate the score for each candidate, starting with
the smallest c = 0x8. Since r < 0x8 is never true for our four inputs, they are all
predicted to be non-crashing. Therefore, we obtain Cf = 2, Ct = 0, Nf = 0,Nt = 2. This
results in θ̂ = 1

2

(
2

2+0
+ 0

0+2

)
= 0.5 and, consequently, in a score = 2 ∗ abs(θ̂ − 0.5) = 0,

indicating that this is not a good candidate for c. Using the next candidate c = 0x0f, we
now predict that the first input is crashing. Since the first input triggered a crash, we
update Cf and Ct by incrementing Ct and decrementing Cf . Consequently, we obtain
Cf = 1, Ct = 1, Nf = 0 and Nt = 2, resulting in θ̂ = 0.75 and a final score of 0.5.
Repeating this for the next step, we obtain a perfect score for the next value 0x400254
as both crashing values are smaller. This yields the final predicate p(r) = x < 0x400254
that will be re-evaluated on the whole dataset.

We observed that if all recorded constants are either valid stack or heap addresses
(i. e., pointers), we receive a high number of false positives since these addresses are too
noisy for statistical analysis. Accordingly, we do not synthesize predicates other than
is_heap_ptr and is_stack_ptr for these cases.

5.4.4 Ranking

Once all steps of our statistical analysis are completed, we obtain the best predicate for
each instruction. A predicate’s score indicates how well a predicate separates crashing
and non-crashing inputs. Since we synthesize one predicate for each instruction, we
obtain a large number of predicates. Note that most of them are independent of the
bug; thus, we discard predicates with a score lower than the empirically determined
threshold of 0.9. Consequently, the remaining predicates identify locations that are
related to the bug.

Still, we do not know in which order relevant predicates are executed; therefore, we
cannot distinguish whether a predicate is related to the root cause or occurs later on
the path to the crash site. As predicates early in the program trace are more likely to
correspond to the root cause, we introduce a new metric called the execution rank. To
calculate the execution rank, we determine the temporal order in which predicates are
executed. To do so, we add a conditional breakpoint for each relevant predicate p. This
breakpoint triggers if the predicate evaluates to true. For each crashing input, we can
execute the program, recording the order in which breakpoints are triggered. If some
predicate p is at program position i and we observed n predicates in total, p’s execution
rank is i

n
. If some predicate is not observed for a specific run, we set its execution rank

to 2 as a penalty. Since a predicate’s execution rank may differ for each crashing input
due to different program paths taken, we average over all executions.

However, the primary metric is still its prediction score. Thus, we sort predicates by
their prediction score and resolve ties by sorting according to the execution rank.
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Example 5.3. Consider three predicates p1, p2 and p3 with their respective scores 1,
0.99 and 0.99. Furthermore, assume that we have the crashing inputs i1 and i2. Let
the observed predicate order be (p1, p3) for i1 and (p1, p3, p2) for i2. Then, we obtain the
execution ranks:

p1: 1
2
·
(
1
2

+ 1
3

)
≈ 0.41

p2: 1
2
·
(
2 + 3

3

)
= 1.5

p3: 1
2
·
(
2
2

+ 2
3

)
≈ 0.83

Since we sort first by score and then by execution rank, we obtain the final predicate
order (p1, p3, p2).

5.5 Implementation
To demonstrate the practical feasibility of the proposed approach, we implemented
a prototype of Aurora. We briefly explain important implementation aspects in
the following, the full source code is available at https://github.com/RUB-SysSec/
aurora.

Input Diversification. For the purpose of exploring inputs close to the original crash,
we use AFL’s crash exploration mode [232]. Given a crashing input, it finds similar
inputs that still crash the binary. Inputs not crashing the program are not fuzzed any
further. We modified AFL (version 2.52b) to save these inputs to the non-crashing set
before discarding them from the queue.

Monitoring Input Behavior. To monitor the input behavior, we implemented a
pintool for Intel PIN [122] (version 3.7). Relying on Intel’s generic and architecture-
specific inspection APIs, we can reliably extract relevant information.

Explanation Synthesis. The explanation synthesis is written in Rust. It takes two
folders containing traces of crashes and non-crashes as input. Then, it reconstructs the
joined control-flow graph and then synthesizes and evaluates all predicates. Finally, it
monitors and ranks the predicates as described before. To monitor the execution of the
predicates, we set conditional breakpoints using the ptrace syscall. In a final step, we
use binutils’ addr2line [83] to infer the source file, function name and line for each
predicate. If possible, all subsequent analysis parts are performed in parallel. Overall,
about 5, 000 lines of code were written for this component.

5.6 Experimental Evaluation
Based on the prototype implementation of Aurora, we now answer the following
research questions:

RQ 1: Is Aurora able to identify and explain the root cause of complex and highly
exploitable bug classes such as type confusions, use-after-free vulnerabilities and
heap buffer overflows?

RQ 2: How close is the automatically identified explanation to the patch implemented
by the developers?
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RQ 3: How many predicates are related to the fault?

To answer these research questions, we devise a set of experiments where we analyze
various types of software faults. For each fault, we have manually analyzed and identified
the root cause; furthermore, we considered the patches provided by the developers.

5.6.1 Setup

All of our experiments are conducted within a cloud VM with 32 cores (based on
Intel Xeon Silver 4114, 2.20 GHz) and 224 GiB RAM. We use the Ubuntu 18.04
operating system. To facilitate deterministic analysis, we disable address space layout
randomization (ASLR).

We selected 25 software faults in different well-known applications, covering a wide
range of fault types. In particular, we picked the following bugs:

• ten heap buffer overflows, caused by an integer overflow (#1 mruby [7]), a logic flaw
(#2 Lua [4], #3 Perl [16] and #4 screen [22]) or a missing check (#5 readelf [21],
#6 mruby [6], #7 objdump [14], #8 patch [15]), #9 Python 2.7/3.6 [18] and
#10 tcpdump [24])

• one null pointer dereference caused by a logic flaw (#11 NASM [11])
• three segmentation faults due to integer overflows (#12 Bash [1] and #13 Bash [2])

or a race condition (#14 Python 2.7 [19])
• one stack-based buffer overflow (#15 nm [13])
• two type confusions caused by missing checks (#16 mruby [8] and #17 Python
3.6 [20])

• three uninitialized variables caused by a logic flaw (#18 Xpdf [25]) or missing
checks (#19 mruby [10] and #20 PHP [17])

• five use-after-frees, caused by a double free (#21 libzip [3]), logic flaws (#22
mruby [9], #23 NASM [12] and #24 Sleuthkit [23]) or a missing check (#25 Lua [5])

These bugs have been uncovered during recent fuzzing runs or found in the bug tracking
systems of well-known applications. Our general selection criteria are (i) the presence
of a proof-of-concept file crashing the application and (ii) a developer-provided fix. The
former is required as a starting point for our analysis, while the latter serves as ground
truth for the evaluation.

For each target, we compile two binaries: One instrumented with AFL that is used for
crash exploration and one non-instrumented binary for tracing purposes. Note that
some of the selected targets (e. g., #1, #5 or #19) are compiled with sanitizers, ASAN
or MSAN, because the bug only manifests when using a sanitizer. The targets compiled
without any sanitizer are used to demonstrate that we are not relying on any sanitizers
or requiring source code access. The binary used for tracing is always built with debug
symbols and without sanitizers. For the sake of the evaluation, we need to measure the
quality of our explanations, as stated in the RQ 1 and RQ 2. Therefore, we use debug
symbols and the application’s source code to compare the identified root cause with the
developer fix. To further simplify this process, we derive source line, function name and
source file for each predicate via addr2line. This does not imply that our approach by
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any means requires source code: all our analysis steps run on the binary level regardless
of available source code. Experiments using a binary-only fuzzer would work the exact
same way. However, establishing the ground truth would be more complex and hence
we use source code strictly for evaluation purposes.

For our evaluation, we resort to the well-known AFL fuzzer and run its crash exploration
mode for two hours with the proof-of-concept file as seed input. We found that this
is enough time to produce a sufficiently large set of diverse inputs for most targets.
However, due to the highly structured nature of the input languages for mruby, Lua, nm,
libzip, Python (only #17) and PHP, AFL found less than 100 inputs within two hours.
Thus, we repeat the crash exploration with 12 hours instead of 2 hours. Each input found
during exploration is subsequently traced. Since some inputs do not properly terminate,
we set a timeout of five minutes after which tracing is aborted. Consequently, we do
lose a few inputs, see Table 5.4 for details. Similarly, our predicate ranking component
may encounter timeouts. As monitoring inputs with conditional breakpoints is faster
than tracing an input, we empirically set the default timeout to 60 seconds.

Table 5.1: Results of our root cause explanations. For 25 different bugs, we note the
target, root and crashing cause as well as whether the target has been compiled using a
sanitizer. Furthermore, we provide the number of predicates and source lines (SLOC)
a human analyst has to examine until the location is reached where the developers
applied the bug fix (denoted as Steps to Dev. Fix ). Finally, the number of true and
false positives (denoted as TP and FP) of the top 50 predicates are shown. * describes
targets where no top 50 predicates with a score above or equal to 0.9 exist.

Target Root Cause Crash Cause Sanitizer Best Score Steps to Dev. Fix Top 50

#Predicates #SLOC TP FP

#1 mruby int overflow heap buffer overflow ASAN 0.998 1 1 50 0
#2 Lua logic flaw heap buffer overflow ASAN 1.000 1 1 50 0
#3 Perl logic flaw heap buffer overflow - 1.000 13 10 43 7
#4 screen * logic flaw heap buffer overflow - 0.999 26 16 30 0
#5 readelf missing check heap buffer overflow ASAN 1.000 7 5 50 0
#6 mruby missing check heap buffer overflow ASAN 1.000 1 1 12 38
#7 objdump missing check heap buffer overflow ASAN 0.981 3 3 48 2
#8 patch missing check heap buffer overflow ASAN 0.997 1 1 50 0
#9 Python missing check heap buffer overflow - 1.000 46 28 44 6
#10 tcpdump missing check heap buffer overflow - 0.994 1 1 50 0
#11 NASM logic flaw nullptr dereference - 1.000 - - 50 0
#12 Bash int overflow segmentation fault - 0.992 10 6 28 22
#13 Bash int overflow segmentation fault - 0.999 9 6 35 15
#14 Python race condition segmentation fault - 1.000 13 13 27 23
#15 nm * missing check stack buffer overflow ASAN 0.980 1 1 35 0
#16 mruby missing check type confusion - 1.000 33 15 50 0
#17 Python missing check type confusion - 1.000 215 141 7 43
#18 Xpdf logic flaw uninitialized variable ASAN 0.997 16 11 50 0
#19 mruby missing check uninitialized variable MSAN 1.000 16 5 50 0
#20 PHP missing check uninitialized variable MSAN 1.000 42 19 29 21
#21 libzip * double free use-after-free ASAN 1.000 1 1 39 0
#22 mruby logic flaw use-after-free ASAN 1.000 9 6 42 8
#23 NASM * logic flaw use-after-free - 0.957 1 1 14 9
#24 Sleuthkit logic flaw use-after-free - 1.000 2 2 48 2
#25 Lua missing check use-after-free ASAN 1.000 3 3 50 0
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Table 5.2: Maximum and average distance between developer fix and crashing location
in both all and unique executed assembly instructions. For reference, the average
amount of instructions executed between program start and crash is also provided.

Target Maximum #Instructions Average #Instructions Average Total #Instructions
all unique all unique all unique

#3 Perl 845,689 7,321 435,873 5,697 1,355,013 32,259
#4 screen 28,289,736 3,441 127,459 1,932 397,595 9,456
#9 Python 3,759,699 9,330 743,216 5,445 34,914,300 60,508
#10 tcpdump 6,727 1,567 2,263 546 103,655 3,622
#11 NASM 22,678,105 8,256 1,940,592 4,383 2,546,740 9,729
#12 Bash 450,428 3,549 11,965 116 1,053,498 19,221
#13 Bash 2,584,606 1,094 178,873 612 1,100,495 16,817
#14 Python 3,923,167 13,028 58,990 835 29,226,209 60,917
#16 mruby 253,173 840 2,154 533 14,926,707 26,982
#17 Python 800 428 498 407 46,112,224 74,590
#23 NASM 7,401,732 4,842 184,036 2,919 2,885,104 8,244
#24 Sleuthkit 199 156 197 155 25,780 5,960

5.6.2 Experiment Design

An overview of all analysis results can be found in Table 5.1. Recall that in practice the
crashing cause and root cause of a bug differ. Thus, for each bug, we first denote its root
cause as identified by Aurora and verified by the developers’ patches. Subsequently,
we present the crashing cause, i. e., the reason reported by ASAN or identified manually.
For each target, we record the best predicate score observed. Furthermore, we investigate
each developer fix, comparing it to the root cause identified by our automated analysis.
We report the number of predicates an analyst has to investigate before finding the
location of the developers’ fix as Steps to Dev. Fix. We additionally provide the number
of source code lines (column SLOC ) a human analyst needs to inspect before arriving
at the location of the developer fix since these fixes are applied on the source code level.
Note that this number may be smaller than the number of predicates as one line of
source code usually translates to multiple assembly instructions. Up to this day, no
developer fix was provided for bug #23 (NASM). Hence, we manually inspected the root
cause, identifying a reasonable location for a fix. Bug #11 has no unique root cause; the
bug was fixed during a major rewrite of program logic (20 files and 500 lines changed).
Thus, we excluded it from our analysis.

To obtain insights into whether our approach is actually capable of identifying the root
cause even when it is separated from the crashing location by the order of thousands of
instructions, we design an experiment to measure the distance between developer fix
and crashing location in terms of executed assembly instructions. More specifically, for
each target, we determine the maximum distance, the average distance over all crashing
inputs and—to put this number in relation—the average of total instructions executed
during a program run. Each metric is given in the number of assembly instructions
executed and unique assembly instructions executed, where each instruction is counted
at most once. Note that some bugs only crash in the presence of a sanitizer (as indicated
by ASAN or MSAN in Table 5.1) and that our tracing binaries are never instrumented
to avoid sanitizer artifacts disturbing our analysis. As a consequence, our distance
measurement would run until normal program termination rather than program crash
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for such targets. Since this would distort the experiment, we exclude such bugs from
the comparison.

Finally, to provide an intuition of how well our approach performs, we analyze the top
50 predicates (if available) produced for each target, stating whether they are related to
the bug or unrelated false positives. We consider predicates as related to the bug when
they pinpoint a location on the path from root cause to crashing location and separate
crashing and non-crashing inputs. For false positives, we evaluate various heuristics that
allow to identify them and thereby reduce the amount of manual effort required.

5.6.3 Results

Following Aurora’s results, the developer fix will be covered by the first few explana-
tions. Typically, an analyst would have to inspect less than ten source code lines to
identify the root cause. Exceptions are larger targets, such as Python (13 MiB) and
PHP (31 MiB), or particularly challenging bugs such as type confusions (#16 and #17).
Still, the number of source code lines to inspect is below 28 for all but the Python type
confusion (#17), which contains a large amount of false positives. Despite the increased
number of source code lines to investigate, the information provided by Aurora is
still useful: for instance, for bug #16—where 15 lines are needed—most of the lines
are within the same function and only six functions are identified as candidates for
containing the root cause. We explain the increased number of false positives found for
these targets at the end of this section in detail.

Another aspect of a bug’s complexity is the distance between the root cause and
crashing location. As Table 5.2 indicates, Aurora is capable of both identifying root
causes when the distance is small (a few hundred instructions, e. g., 197 for Sleuthkit)
and significant (millions of instructions, e. g., roughly 28 million for screen). Overall,
we conclude RQ 1 and RQ 2 by finding that Aurora is generally able to provide
automated root cause explanations close to the root cause—less than 30 source code
lines and less than 50 predicates—for diverse bugs of varying complexity.

The high quality of the explanations generated by Aurora is also reflected by its high
precision (i. e., the ratio of true positives to all positives). Among the top 50 predicates,
there are significantly more true positives than negatives. More precisely, for 18 out of
25 bugs, we have a precision ≥ 0.84, including 12 bugs with a precision of 1.0 (no false
positives). Only for two bugs, the precision is less than 0.5—0.14 for #17 and 0.24 for
#6. Note that for #6, the predicate pinpointing the developer fix is at the top of the
list, rendering all these false positives irrelevant to triaging the root cause.

Despite the high precision, some false positives are generated. During our evaluation,
we observed that they are mostly related to (1) (de-)allocation operations as well as
garbage collectors, (2) control-flow, i. e., predicates which indicate that non-crashes
executed the pinpointed code in diverse program contexts (e. g., different function calls
or more loop iterations), (3) operations on (complex) data structures such as hash maps,
arrays or locks, (4) environment, e. g., parsing command-line arguments or environment
variables (5) error handling, e. g., signals or stack unwinding. Such superficial features
may differentiate crashes and non-crashes but are generally not related to the actual
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bug (excluding potential edge cases like bugs in the garbage collector). Many of these
false positives occur due to insufficient code coverage achieved during crash exploration,
causing the sets of crashing and non-crashing inputs to be not diverse enough.

Table 5.3: Analysis results of false positives within the top 50 predicates. For each
target, we classify its false positives into the categories they are related to: allocation or
garbage collector (Alloc), control flow (CF), data structure (DS), environment (Env) or
error handling (Error). Additionally, we track the number of predicates an analyst has
to inspect in more detail (In-depth Analysis) as well as propagations of false positives
that can be discarded easily.

Target False Positive Categories Propagations In-depth AnalysisAlloc CF DS Env Error

#3 Perl - - 7 - - - -
#6 mruby - - 38 - - - -
#7 objdump - 2 - - - - -
#9 Python - 1 - 2 3 - -
#12 Bash 1 1 - 1 4 8 7
#13 Bash 1 1 - - 4 5 4
#14 Python - - - 3 - 15 5
#17 Python 40 - 2 - - - 1
#20 PHP - - - 21 - - -
#22 mruby - 1 - - - 4 3
#23 NASM 3 - - - 2 2 2
#24 Sleuthkit - 2 - - - - -

To detect such false positives during our evaluation, we employed various heuristics:
First, we use the predicate’s annotations to identify functions related to one of the five
categories of false positives and discard them. Then, for each predicate, we inspect
concrete values that crashes and non-crashes exhibit during execution. This allows us
to compare actual values to the predicate’s explanation and—together with the source
code line—recognize semantic features such as loop counters or constants based on
timers. Once a false positive is identified, we discard any propagation of the predicate’s
explanation and thereby subsequent related predicates. In our personal experience, these
heuristics allow us to reliably detect many false positives without considering data-flow
dependencies or other program context. This is supported by our results detailed in
Table 5.3. Based on the five categories, we evaluate how many false positives within the
top 50 predicates can be identified heuristically. Additionally, we denote the number of
propagations as well as the number of false positives that must be analyzed in-depth.
Note that an analyst had to conduct such an analysis for only half of the targets with
false positives. We note that this may differ for other bugs or other target applications,
especially edge cases such as bugs in the allocator or garbage collector.

Since we use a statistical model, false positives are a natural side effect, yet, precisely
this noisy model is indispensable. For 15 of the analyzed bugs, we could find a perfect
predicate (with a score of 1.0), i. e., predicates that perfectly distinguish crashes and
non-crashes. In the remaining ten cases, some noise has been introduced by crash
exploration. However, as our results indicate, small amounts of noise do not impair our
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analysis. Therefore, we answer RQ 3, concluding that nearly all predicates found by
Aurora are strongly related to the actual root cause.

Since the statistical model is only as good as the data it operates on, we also investigate
the crash exploration and tracing phases. The results are presented in Table 5.4. Most
traces produced by crash exploration could be traced successfully. The only exception
being Bash, which caused many non-terminating runs that we excluded from subsequent
analysis. Note that we were still able to identify the root cause.

We also investigate the time required for tracing, predicate analysis and ranking. We
present the results in Table 5.5. On average, Aurora takes about 50 minutes for
tracing, while the predicate analysis takes roughly 18 minutes and ranking four minutes.
While these numbers might seem high, remember that the analysis is fully automated.
In comparison, an analyst triaging these bugs might spend multiple days debugging
specific bugs and identifying why the program crashes.

5.6.4 Case Studies

In the following, we conduct in-depth case studies of various software faults to illustrate
different aspects of our approach.

5.6.4.1 Case Study: Type Confusion in mruby

First, we analyze the results of our automated analysis for the example given in
Section 5.2.1 (Bug #16). As described, the NotImplementedError type is aliased to
the String type, leading to a type confusion that is hard to spot manually. Consequently,
it is particularly interesting to see whether our automated analysis can spot this elusive
bug. As exploring the behavior of mruby was challenging for AFL, we ran the initial
crash exploration step for 12 hours in order to get more than 100 diversified crashes
and non-crashes. Running our subsequent analysis on the best 50 predicates reported
by Aurora, we manually found that all of the 50 predicates are related to the bug
and provide insight into some aspects of the root cause.

The line with the predicate describing the location of the developers’ fix is ranked 15th.
This means that an analyst has to inspect 14 lines of code that are related to the bug
but do not point to the developer fix. In terms of predicates, the 33rd predicate explains
the root cause. This discrepancy results from the fact that one source code line may
translate to multiple assembly instructions. Thus, multiple predicates may refer to
values used in the same source code line.

The root cause predicate itself conditions on the fact that the minimal value in register
rax is smaller than 17. Remember that the root cause is the missing type check. Types
in mruby are implemented as enum, as visible in the following snippet of mruby’s source
code (mruby/value.h):

112 MRB_TT_STRING, /∗ 16 ∗/
113 MRB_TT_RANGE, /∗ 17 ∗/
114 MRB_TT_EXCEPTION, /∗ 18 ∗/
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Table 5.4: Number of crashing (#c) and non-crashing (#nc) inputs found by crash
exploration (Exploration) as well as the percentage of how many could be successfully
traced (Tracing).

Target Exploration Tracing
#c #nc #c #nc

#1 mruby 120 2708 100% 99.9%
#2 Lua 398 1482 100% 100%
#3 Perl 1591 6037 100% 99.9%
#4 screen 858 2164 100% 100%
#5 readelf 687 1803 100% 100%
#6 mruby 809 3914 100% 99.9%
#7 objdump 27 122 100% 100%
#8 patch 266 886 74.8% 89.7%
#9 Python 211 1546 100% 100%
#10 tcpdump 161 619 100% 100%
#11 NASM 2476 2138 100% 100%
#12 Bash 842 5483 7.1% 15.9%
#13 Bash 213 2102 50.7% 55.5%
#14 Python 253 1695 98.0% 98.2%
#15 nm 111 468 100% 100%
#16 mruby 1928 4063 100% 100%
#17 Python 705 2536 99.7% 99.8%
#18 Xpdf 779 545 100% 100%
#19 mruby 1128 2327 99.7% 99.9%
#20 PHP 800 2081 100% 100%
#21 libzip 36 286 100% 100%
#22 mruby 1629 3557 100% 99.9%
#23 NASM 590 1787 99.8% 100%
#24 Sleuthkit 108 175 100% 100%
#25 Lua 579 1948 100% 100%

Our identified root cause pinpoints the location where the developers insert their fix
and semantically states that the type of the presumed exception object is smaller than
17. In other words, the predicate distinguishes crashes and non-crashes according to
their type. As can be seen, the String type has a value of 16; thus, it is identified
as crashing input, while the exception type is assigned 18. This explains the type
confusion’s underlying fault.

The other predicates allow tracing the path from the root cause to the crashing
location. For example, the predicates rated best describe the freeing of an ob-
ject within the garbage collector. This is because the garbage collector spots that
NotImplemenetedError is changed to point to String instead of the original class. As
a consequence, the garbage collector decides to free the struct containing the original
class NotImplementedError, a very uncommon event. Subsequent predicates point to
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Table 5.5: Time spent on tracing, predicate analysis (PA) and ranking of each target
(in hours:minutes).

Target Tracing PA Ranking

#1 mruby 01:08 00:19 00:04
#2 Lua 00:09 00:03 < 1 min
#3 Perl 00:53 01:52 00:17
#4 screen 00:11 00:04 < 1 min
#5 readelf 00:05 00:02 < 1 min
#6 mruby 01:44 00:42 00:16
#7 objdump < 1 min < 1 min < 1 min
#8 patch 00:36 < 1 min < 1 min
#9 Python 01:20 00:15 00:05
#10 tcpdump 00:01 < 1 min < 1 min
#11 NASM 00:20 00:12 00:07
#12 Bash 00:49 00:01 00:03
#13 Bash 00:26 00:02 00:01
#14 Python 01:23 00:14 00:08
#15 nm 00:01 < 1 min < 1 min
#16 mruby 01:47 00:49 00:02
#17 Python 04:03 00:55 00:03
#18 Xpdf 00:19 00:01 00:03
#19 mruby 01:58 00:21 00:22
#20 PHP 01:16 00:47 00:03
#21 libzip < 1 min < 1 min < 1 min
#22 mruby 01:57 00:49 00:16
#23 NASM 00:10 00:03 00:02
#24 Sleuthkit < 1 min < 1 min < 1 min
#25 Lua 00:11 00:07 < 1 min

locations where the string is attached to the presumed exception object during the
raising of the exception. Additionally, predicates pinpoint the crashing location by
stating that a crash will occur if the dereferenced value is smaller than a byte.

5.6.4.2 Case Study: Heap Buffer Overflow in readelf

GNU Binutils’ readelf application may crash as a result of a heap buffer overflow
when parsing a corrupted MIPS option section [21]. This bug (Bug #5) was assigned
CVE-2019-9077. Note that this bug only crashes when ASAN is used. Consequently,
we use a binary compiled with ASAN for crash exploration but run subsequent tracing
on a non-ASAN binary. The bug is triggered when parsing a binary input where a
field indicates that the size is set to 1 despite the actual size being larger. This value is
then processed further, amongst others, by an integer division where it is divided by
0x10, resulting in a value of 0. The 0 is then used as size for allocating memory for
some struct. More specifically, it is passed to the cmalloc function that delegates the

94



call to xmalloc. In this function, the size of 0 is treated as a special case where one
byte should be allocated and returned. Subsequently, writing any data larger than one
byte—which is the case for the struct the memory is intended for—is an out-of-bounds
write. As no crucial data is overwritten, the program flow continues as normal unless it
was compiled with ASAN, which spots the out-of-bounds write.

To prevent this bug, the developers introduced a fix where they check whether the
allocated memory’s size is sufficient to hold the struct. Analyzing the top 50 predicates,
we observe that each of these predicates is assigned a score larger than or equal 0.99.
Our seventh predicate pinpoints the fix by making the case that an input crashes if the
value in rcx is smaller than 7. The other predicates allow us to follow the propagation
until the crashing location. For instance, two predicates exist that point to the integer
division by 0x10, which causes the 0. The first predicate states that crashes have a
value smaller than 0x7 after the division. The second predicate indicates that the zero
flag is set, demonstrating a use case for our flag predicates. We further see an edge
predicate, which indicates that only crashes enter the special case, which is triggered
when xmalloc is called with a size of 0.

5.6.4.3 Case Study: Use-after-free in Lua

In version 5.3.5, a use-after-free bug (#25, CVE-2019-6706) was found in the Lua inter-
preter [5]. Lua uses so-called upvalues to implement closures. More precisely, upvalues
are used to store a function’s local variables that have to be accessed after returning
from the function [121]. Two upvalues can be joined by calling lua_upvaluejoin. The
function first decreases the first upvalue’s reference count and, critically, frees it if it is
not referenced anymore, before then setting the reference to the second upvalue. The
function does not check whether the two passed parameters are equal, which semanti-
cally has no meaning. However, in practice, the upvalue will be freed before setting the
reference, thus provoking a use-after-free. ASAN detects the crash immediately while
regular builds crash with a segmentation fault a few lines later.

Our approach manages to create three predicates with a score of 1. All of these three
predicates are edge predicates, i. e., detecting that for crashes, another path was taken.
More precisely, for the very first predicate, we see the return from the function where
the second upvalue’s index was retrieved. Note that this is before the developers’ fix, but
the first point in the program where things go wrong. The second predicate describes
the function call where the upvalue references are fetched, which are then compared for
equality in the developer fix, i. e., it is located closely before the fix. The third predicate
is located right after the developer fix; thus, we have to inspect three predicates or
three source lines until we locate the developer fix. It describes the return from the
function decreasing the reference count. All other predicates follow the path from the
root cause to the crashing location.

5.6.4.4 Case Study: Uninitialized Variable in mruby

The mruby interpreter contains a bug where uninitialized memory is accessed (Bug #19).
This happens in the unpack_m function when unpacking a base64 encoded value from a
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packed string. A local char array of size four is declared without initialization. Then, a
state machine implemented as a while loop iterates over the packed string, processing it.
The local char array is initialized in two states during this processing step. However,
crafting a specific packed string allows to avoid entering these two states. Thereby, the
local array is never properly initialized and MSAN aborts program execution upon the
use of the uninitialized memory.

When analyzing the top 50 predicates, we find that they are are all related to the bug.
The 16th predicate pinpoints the location where the developer fix is inserted. It describes
that crashes fail to pass the condition of the while loop and—as a consequence—leave
the loop with the local variable being uninitialized. Another predicate we identify
pinpoints if the condition allows skipping the initialization steps, stating that this is
a characteristic inherent to crashing inputs. All other predicates highlight locations
during or after the state machine. Note that the crash only occurs within MSAN; thus,
the binary we trace does not crash. However, this does not pose a problem for our
analysis, which efficiently pinpoints root cause and propagation until the crashing and
non-crashing runs no longer differ. In this particular case, the uninitialized memory is
used to calculate a value that is then returned. For instance, we see that the minimal
memory value written is less than 0x1c at some address. Consequently, our analysis
pinpoints locations between the root cause and the usage of the uninitialized value.

5.6.4.5 Case Study: Null Pointer Dereference in NASM

For NASM (#11, CVE-2018-16517), we analyze a logic flaw which results in a null pointer
dereference that crashes the program. This happens because a pointer to a label is not
properly initialized but set to NULL. The program logic assumes a later initialization
within a state machine. However, this does not happen because of a non-trivial logic
flaw. The developers fix this problem by a significant rewrite, changing most of the
implementation handling labels (in total, 500 lines of code were changed). Therefore,
we conclude that no particular line can be determined as the root cause; nevertheless,
we investigate how our approach performs in such a scenario. This is a good example
to demonstrate that sometimes defining the root cause can be a hard challenge even for
a human.

Analyzing the top 50 predicates reported, we find that Aurora generates predicates
pointing to various hotspots, which show that the label is not initialized correctly. More
precisely, we identify a perfect edge predicate stating that the pointer is initially set
to NULL for crashes. Subsequent predicates inform us that some function is called,
which takes a pointer to the label as a parameter. They identify that for crashes the
minimal value for rdi (the first function parameter in the calling convention) is smaller
than 0xff. Immediately before the function attempts to dereference the pointer, we see
that the minimal value of rax is smaller than 0xff, which indicates that the value was
propagated. Afterward, a segmentation fault occurs as accessing the address 0 is illegal.
In summary, we conclude that Aurora is useful to narrow down the scope even if no
definite root cause exists.
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5.7 Discussion

As our evaluation shows, our approach is capable of identifying and explaining even
complex root causes where no direct correlation between crashing cause and root cause
exists. Nevertheless, our approach is no silver bullet: It still reports some predicates
that are not related to the root cause. Typically, this is caused by the crash exploration
producing an insufficiently diverse set of test cases. This applies particularly to any input
that was originally found by a grammar-based fuzzer since AFL’s type of mutations
may fail to produce sufficiently diverse inputs for such targets [44]. We expect that
better fuzzing techniques will improve the ability to generate more suitable corpora.
Yet, no matter how good the fuzzer is, in the end, pinpointing a single root cause will
remain an elusive target for automated approaches: even a human expert often fails to
identify a single location responsible for a bug.

Relying on a fuzzer illustrates another pitfall: We require that bugs can be reproduced
within a fuzzing setup. Therefore, bugs in distributed or heavily concurrent systems
currently cannot be analyzed properly by our approach. However, this is a limitation
of the underlying fuzzer rather than Aurora: Our analysis would scale to complex
systems spanning multiple processes and interacting components; our statistical model
can easily deal with systems where critical data is passed and serialized by various
means, including networks or databases, where traditional analysis techniques like taint
tracking fail.

In some cases, the predicates that we generate might not be precise enough. While this
situation did not happen during our evaluation, hypothetically, there may exist bugs
that can only be explained by predicates spanning multiple locations. For example, one
could imagine a bug caused by using an uninitialized value, which is only triggered if
two particular conditions are met: The program avoids taking a path initializing the
value and later takes a path where the value is accessed. Our single-location predicates
fail to capture that the bug behavior is reliant on two locations. We leave extending
our approach to more complex and compound predicates as an interesting question for
future work.

Last, our system requires a certain computation time to identify and explain root causes.
In some cases, Aurora ran for up to 17 hours (including 12 hours for crash exploration).
We argue that this is not a problem, as our system is used in combination with normal
fuzzing. Thus, an additional 17 hours of fuzzing will hardly incur a significant cost
for typical testing setups. Since it took us multiple person-days to pinpoint the root
cause for some of the bugs we analyzed, making the integration of our fully automated
approach into the fuzzing pipeline seems feasible.

An integration to fuzzing could benefit the fuzzer: Successful fuzzing runs often produce
a large number of crashing inputs, many of which trigger the same crash. To save an
analyst from being overwhelmed, various heuristics are deployed to identify equivalent
inputs. Most rely on the input’s coverage profile or stack hashing where the last n
entries of the call stack are hashed [134]. Unfortunately, both techniques have been
shown to be imprecise, i. e., to report far too many distinct bugs, while sometimes even
joining distinct bugs into one equivalence class [134]. Given an automated approach
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capable of identifying the root cause such as ours, it is possible to bucket crashing
inputs according to their root cause. To this end, one could pick some random crashing
input, identify its root cause and then check for all remaining crashing inputs whether
the predicate holds true. Each crashing input for which the predicate is evaluated to
true is then collected in one bucket. For the remaining inputs, the process could be
repeated until all crashing inputs have been sorted into their respective equivalence
classes.

In some cases, such as closed-source binaries or a limited amount of developer time,
manually implementing fixes may be impossible. An automated approach to providing
(temporary) patches may be desirable. Our approach could be extended to patch the
root cause predicate into the binary such that—at the point of the root cause—any
input crashing the binary leads to a graceful exit rather than a potentially exploitable
crash.

5.8 Related Work

In the following, we focus on works related closest to ours, primarily statistical and
automated approaches.

Spectrum-based Fault Localization. Closest related to our work are so-called
spectrum-based, i. e., code coverage-based, fault localization techniques [75]. In other
words, these approaches attempt to pinpoint program elements (on different levels,
e. g., single statements, basic blocks or functions) that cause bugs. To this end, they
require multiple inputs for the program, some of which must crash while others may
not. Often, they use test suites provided by developers and depend on the source code
being available. For instance, Zhang et al. [234] describe an approach to root cause
identification targeting the Java Virtual Machine: first, they locate the non-crashing
input from provided test suite whose control flow paths beginning overlaps the most
with the one of the crashing input under investigation. Then, they determine the
location of the first deviation, which they report as the root cause. Overall, most
approaches either use some metric [26, 27, 126, 218, 219] to identify and rank possible
root causes or rely on statistical techniques [145, 148, 162].

As a sub-category of spectrum-based fault localization, techniques based on statistical
approaches use predicates to reason about provided inputs. Predicate-based techniques
are used to isolate bugs[145] or to pinpoint the root cause of bugs [148, 162, 234]. These
approaches typically require source code and mostly rely on inputs provided by test
suites.

While our work is similar to such approaches with respect to sampling predicates and
statistically isolating the root cause, our approach does not require access to source
code since it solely works on the binary level. Furthermore, our analysis synthesizes
domain-specific predicates tailored to the observed behavior of a program. Also, we
do not require any test suite but rely on a fuzzer to generate test cases. This provides
our approach with a more diversified set of inputs, allowing for more fine-grained
analysis.
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Reverse Execution. A large number of works [68, 69, 105, 161, 221] investigate the
problem of analyzing a crash, typically starting from a core dump. To this end, they
reverse-execute the program, reconstructing the data flow leading to the crash. To
achieve this, CREDAL [220] uses a program’s source code to automatically enrich the
core dump analysis with information aiding an analyst in finding memory corruption
vulnerabilities. Further reducing the manual effort needed, POMP requires a control-
flow trace and crash dump, then uses backward taint analysis [221] to reverse the data
flow, identifying program statements contributing to a crash. In a similar vein but for a
different application scenario—core dumps sampled on an OS level—RETracer [68]
uses backward taint analysis without a trace to reconstruct functions on the stack
contributing to a crash. Improving upon RETracer, Cui et al. [69] developed REPT,
an reverse debugger that introduces an error correction mechanism to reconstruct
execution history, thereby recovering data flow leading to a crash. To overcome
inaccuracies, Guo et al. [105] propose a deep-learning-based approach based on value-set
analysis to address the problem of memory aliasing.

While sharing the goal of identifying instructions causing a crash, Aurora differs from
these approaches by design. Reverse execution starts from a crash dump, reversing the
data-flow, thereby providing an analyst with concrete assembly instructions contributing
to a bug. While these approaches are useful in scenarios where a crash is not reproducible,
we argue that most of them are limited to correctly identify bugs that exhibit a direct
data dependency between root cause and crashing location. While REPT does not
rely on such a dependency, it integrates into an interactive debugging session rather
than providing a list of potential root cause predicates; thus, it is orthogonal to our
approach. Moreover, Aurora uses a statistical analysis to generate predicates that
not only pinpoint the root cause but also add an explanation describing how crashing
inputs behave at these code locations. Furthermore, since we do not perform a concrete
analysis of the underlying code, Aurora can spot vulnerabilities with no direct data
dependencies.

5.9 Conclusion
In this chapter, we introduced and evaluated a novel binary-only approach to auto-
mated root cause explanation. In contrast to other approaches that identify program
instructions related to a program crash, we additionally provide semantic explanations
of how these locations differ in crashing runs from non-crashing runs. Our evaluation
shows that we are able to spot root causes for complex bugs such as type confusions
where previous approaches failed. Given debug information, our approach is capable of
enriching the analysis’ results with additional information. We conclude that Aurora
is a helpful addition to identify and understand the root cause of diverse bugs.
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Chapter 6

Conclusion

Due to the undecidability of reasoning about software security in general, analysis
techniques are often goal-oriented, effectively limiting the analysis scope to specific
aspects. Some reasoning techniques are based on abstraction in which we transform parts
of a program into an abstract domain that is explicitly constructed to facilitate reasoning
about specific characteristics. In this scenario, a behavioral substitute represents the
program’s behavioral semantics in the abstract domain.

In this thesis, we developed problem-specific analysis techniques based on synthesized
behavioral substitutes related to code deobfuscation, fuzzing and root cause analysis.
In each case, we first designed a domain-specific representation that allowed us to
represent a wide range of problem instances in its associated area. Then, we applied
stochastic program synthesis techniques to learn behavioral substitutes automatically.
Using the target’s program behavior as feedback, we were able to craft target-specific
representations. By combining target-specific representations in a problem-specific
domain, we were able to reason about generic instances in the problem space while
performing an analysis tailored to a specific target. As a consequence, we advanced
research on different topics in software security by introducing methods based on
stochastic processes or statistical analysis, partially outperforming state-of-the-art
techniques or introducing orthogonal approaches to existing solutions.

In the following, we discuss the results of this thesis in further detail and proceed to
describe the limitations of our approaches. Finally, we outline directions for future
research that are based on the techniques proposed in this thesis.

Expression Synthesis to Simplify Obfuscated Code. Chapter 3 introduced
Syntia, a code deobfuscation approach based on program synthesis. Since existing
code deobfuscation approaches rely on a precise analysis of the underlying code, they
can be thwarted by specific code transformations. Our semantics-based approach can
deobfuscate code of arbitrary syntactic complexity because it uses the obfuscated code as
a black-box to observe its input-output behavior. Based on this I/O behavior, Syntia
learns syntactically simpler expressions with the same semantics using Monte Carlo Tree
Search. We demonstrated the feasibility of our approach by synthesizing instruction
semantics of industrial-grade, state-of-the-art VM-based obfuscators. Furthermore, we
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simplified syntactically complex arithmetic expressions and ROP gadgets, demonstrating
the general nature of our approach.

Input Structure Synthesis to Guide Feedback-driven Fuzzing. In Chapter 4,
we developed Grimoire, a fuzzer that learns syntactical patterns of structured input
languages and produces new structured inputs of the target language using structure-
aware mutations. To learn these patterns, it uses the inputs’ code coverage as feedback
and dissects the inputs by removing parts that are irrelevant to the observed coverage.
Combined with structure-aware mutations, Grimoire outperformed other state-of-the-
art fuzzers on generic targets that expect structured inputs (e. g., language interpreters
and parsers). Furthermore, we increased the test coverage of target-specific structured
fuzzers by using their corpus as a seed.

Predicate Synthesis to Automate Root Cause Explanation. In Chapter 5, we
presented Aurora, a generic approach that employs statistical analysis to pinpoint the
root cause for various types of bugs. Based on a set of trace information representing
program behavior for crashing and non-crashing program runs, Aurora synthesizes
Boolean predicates that distinguish crashes from non-crashes, effectively predicting if a
provided input will crash or not. Ranking these predicates according to their accuracy
and average execution order allows a human analyst to precisely pinpoint the root
cause. In our evaluation, we demonstrated this on a wide variety of real-world targets
and complex bugs, including type confusions, use-after-frees, heap buffer overflows and
uninitialized variables.

6.1 Limitations

The results presented in this thesis emphasize the benefits of combining problem-specific
analysis techniques with target-specific behavioral substitutes. Despite all advantages,
these approaches have some significant drawbacks that we discuss in the following. First,
we cover constraints all techniques are subject to. Afterward, we discuss shortcomings
of our solutions presented for code deobfuscation, fuzzing and root cause analysis.

In general, reasoning about security aspects of software is undecidable [182]. Therefore,
common approaches limit the scope to specific aspects only. Although our analysis
techniques were modeled to be problem-specific, they only covered a subset of open
problems in their associated areas. As a consequence, problem-specific techniques have
to be precisely designed to operate in a defined scope; this is often a labour-intensive
manual task. Furthermore, we apply methods based on program synthesis to obtain
target-specific behavioral substitutes. For this, we require some kind of feedback from
the target application. This feedback might not be easy to obtain depending on the
context the analyzed program runs in, such as some (deeply) embedded systems or
devices running on undocumented architectures. Finally, as a general limitation of
program synthesis, our techniques are limited by semantic complexity, meaning we can
only synthesize semantically „simple“ constructs.

Code Deobfuscation. In the field of code deobfuscation, our approach is directly
limited by the constraints of stochastic program synthesis. In general, synthesis results
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may not be precise, since they are approximated by randomly sampled input-output
pairs. Random sampling may not cover the full semantics, as it can miss edge cases.
For instance, in the case of point functions—in which only a single input triggers
different behavior—it is unlikely to guess the correct input. Another limitation is non-
deterministic behavior: if an oracle returns different outputs for the same input, I/O
samples cannot be representative. Finally, it is not guaranteed that a synthesizer will
find any solution at all. If expressions cannot be expressed by the underlying grammar
or if expressions are semantically too complex, the synthesizer can only learn partial
expressions. Nonetheless, in practice, these techniques still provide useful insights for
human analysts.

Fuzzing. In the area of fuzzing, our presented approach is also restricted in terms of
complexity. While it works well on deeply nested and syntactically complex constructs,
it is still too coarse-grained to identify constructs such as opening and closing tags (e. g.,
as seen in XML) and variable uses. Furthermore, it cannot find semantically complex
as those that require nested memory allocations and deallocations before anything
„interesting“ happens. Finally, the general limitations of fuzzing also apply to our
methods, such as an application’s native execution time, fuzzing distributed/concurrent
systems and the ability to actually execute code.

Root Cause Analysis. As for root cause analysis, our techniques are also limited
by semantic complexity. In some cases, our generated predicates might not be precise
enough to explain a bug. While we pinpoint single locations, there may exist bugs that
depend on many different conditions that must be true at the same time. Furthermore,
our approach still reports some predicates that are not related to the root cause.
Typically, this is caused by crash exploration producing an insufficiently diverse set of
test cases. In addition, our approach requires the bug to be reproducible in a fuzzing
setup, which is, for instance, not the case in scenarios such as distributed and heavily
concurrent systems.

6.2 Future Work
While we presented problem-specific techniques based on behavioral substitutes in the
fields of code deobfuscation, fuzzing and root cause analysis, there are other domains
where such methods might be beneficial as well. Furthermore, although our techniques
were designed to be generic in their respective domain, they only covered some of
the problems in their associated field. After having discussed the limitations of our
approaches in the previous section, we now present general as well as project-specific
ideas for future research.

Since program synthesis is actively researched, any progress in that area has a direct
impact on the synthesis of behavioral substitutes. The more powerful synthesis tech-
niques are, the better semantically complex constructs can be synthesized. For instance,
stratified synthesis [112] might improve program synthesis significantly. The main idea
of this approach is to incrementally synthesize larger parts of the instruction trace based
on previous results and, thus, successively approximate high-level semantics of larger
expressions. Related to software security, research has started to employ program syn-

103



thesis for automated exploit generation, such as recent work by Heelan et al. [109, 110]:
they demonstrated automated techniques to chain exploitation primitives for heap
exploitation. Another research area that benefits from program synthesis is automated
reverse engineering : we could synthesize binary decoders [176] for unknown instruction
set architectures as well as nested data structures for type inference [190].

Code Deobfuscation. For code deobfuscation, our program synthesis approach based
on Monte Carlo Tree Search produced excellent results. However, comparing it to
other stochastic algorithms such as Simulated Annealing, beam search [181] and late
acceptance hill climbing [52] might be insightful. Recent research by David et al. [73]
performed expression simplification based on enumerative program synthesis. Using
a dynamic trace and concolic execution, they incrementally simplified subexpressions
of the derived abstract syntax tree. While their approach worked well in a dynamic
setting, it would be interesting to apply this approach in a static scenario.

Fuzzing. In order to improve our fuzzing approach, future work might explore more
strategies for learning syntactically complex constructs: for instance, one could apply
different learning strategies that fixate and mutate multiple occurrences of a substring
at the same time to detect patterns such as XML tags and variables. This could be
combined with generalization techniques more expressive than learning gaps, such as
semantic placeholders for variables, size fields and other constructs. In our case, we
used all triggered coverage bytes as synthesis feedback. In a more fine-grained approach,
one could consider using only single coverage bytes from the input and combining them
incrementally to get more exact results.

Root Cause Analysis. For root cause analysis, the most exciting future research
direction might be exploring techniques for synthesizing compound predicates that
combine different single-location predicates. This way, one could isolate the faulty
behavior of bugs that require more than one condition to be true at the same time.
Further research could also focus on more fine-grained crash exploration techniques that
improve the input diversity for a given crash. More applied research could integrate
root cause analysis into a fuzzing framework. Fuzzing often produces a large number
of crashing inputs even though many of these inputs trigger the same bug. Given an
approach for automated root cause identification, it would be interesting to bucket
crashing inputs according to their root cause. To this end, one could pick some random
crashing input, identify its root cause and then check for all remaining crashing inputs
whether the predicate holds true. Finally, we could use synthesized predicates for
automated patching. In this case, we would insert a predicate at the root cause. If it
evaluates to true, forecasting a crash, we perform a graceful exit instead of potentially
triggering an exploitable crash.

In summary, we believe that the analysis techniques developed in this thesis provide
a solid baseline and advance research in their associated areas. We hope that they
offer a fruitful ground for further exploration and inspire other researchers to simplify
problem-specific reasoning about software security.
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